from moose_nerp.prototypes.util import NamedList, NamedDict
from moose_nerp.prototypes.syn_proto import SynChannelParams, MgParams
from . import param_cond
#Parameters for synpases (SI units):
#Erev (Volts), tau1 & tau2 (sec)
#Gbar units: Siemens/meter squared
#C is concentration of Mg in mM, A is 1/eta and B is 1/gamma,
#These params are too insensitive to voltage
#mgparams={'A':(1/18.0), 'B':(1/99.0), 'C': 1.4}
#Classic (allows significant calcium at resting potential):
#mgparams={'A':(1/3.57), 'B':(1/62.0), 'C': 1.4}
#Intermediate
_NMDA_MgParams = MgParams(A = 1/6.0,
B = 1/80.0,
C = 1.4)
#Sriram uses 0.109e-9 for AMPA and 0.9e-9 for Gaba
_SynGaba = SynChannelParams(Erev = -60e-3,
tau1 = 0.25e-3,
tau2 = 3.75e-3,
Gbar = 0.2e-9,
var=0.05)
_SynAMPA = SynChannelParams(Erev = 5e-3,
tau1 = 1.1e-3,
tau2 = 5.75e-3,
Gbar = 2e-9,
var=0.05,
spinic = True)
_SynNMDA = SynChannelParams(Erev = 5e-3,
tau1 = 1.1e-3,
tau2 = 37.5e-3,
Gbar = 2e-9,
var=0.05,
MgBlock = _NMDA_MgParams,
spinic = True,
NMDA=True,
nmdaCaFrac = 0.05
)
#nmdaCaFra fraction of nmda current carried by calcium
#Note that since Ca reversal produces ~2x driving potential,
#need to make this half of typical value. Default is 0.02 in Moose
SYNAPSE_TYPES = NamedDict(
'SYNAPSE_TYPES',
ampa = _SynAMPA,
gaba = _SynGaba,
nmda = _SynNMDA,
)
# number of synapses at each distance
_gaba = {param_cond.inclu:1}
_glu = {param_cond.inclu:1}
NumSyn={'Gaba':_gaba,
'Glu':_glu}