#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 18 21:24:35 2018
Ideas for spatiotemporal input mapping.
1. Define number of total inputs and number of inputs per cluster,
e.g. nInputs = 100 and clusterSize = 5; if clusterSize == 1, then there is
no clustering and we can randomly apply nInputs. if clusterSize > 1, then
define number of clusters, numClusters = nInputs/clusterSize, randomly
determine the center spine/synapse for each cluster, Additionally we need
a clusterLength parameter, then randomly select clusterSize spines/synapses
within the clusterLength window around the cluster center.
Note: Check for overlap of individual spines: don't select a spine if it has
already been selected. Also, check for overlap of cluster window; if a
cluster location would cause overlap then re-select.
2. Optionally apply different distributions for randomly selecting things;
Uniform by default, but also gaussian, or distance-dependent skewed
distributions to favor proximal vs. distal inputs
3. Optionally define the minimum distance from soma and maximum distance from
soma for performing any random selection of spines.
4. Define Pools of inputs--one pool can be created with one set of parameters,
and/or multiple pools can be created.
5. Optionally define number/subset of branches to apply inputs to, and order
relative to the soma (primary, secondary, tertiary) or terminal. Also,
optionally define the relationship between multiple branches -- e.g., apply
to 2 sibling branches, 2 first cousin branches, 2 second cousin branches,
6. Temporal mapping: Per Pool, per spatial cluster, Random, spatial-order
dependent, e.g. distal to proximal or proximal to distal; mean ISI, or
give min/max time window and select within window by evenly dividing into
enough intervals OR randomly selecting from time window, with optional
distributions.
7. Distributions: Using distance-dependent functions, e.g. linear, sigmoid,
etc., to weight probability of applying input distally? Order List of
possible synapses by distance, then randomly select?
8. np.random.choice for selecting from discrete list of spines/synapses
9. Pros/cons of randomly selecting synapses from a list of possible moose
elements, vs. randomly determining numerical position and then making a
synapse there? Might be more efficient to determine where synapses should be
first and then make only those, rather than simulating unnecessary synapses?
@author: dandorman
"""
import numpy as np
import moose_nerp.prototypes.util as util
import moose
def selectRandom(elementList, n=1, replace=False, weight=None):
'''Returns array of n elements selected from elementList.
weight can be an array-like of same length of element list, should sum to 1.
Add weight parsing to this function, or create a separate function?
'''
selections = np.random.choice(elementList, size=n, replace=replace, p=weight)
return selections
def distanceWeighting(elementList, distanceMapping):
'''Creates non-uniform, distance-dependent weighted probability.
distanceMapping should be a callable or a dictionary of {(distanceMin,distanceMax):RelativeWeight}
The distance mapping can be relative weights as a function of distance,
and this function will normalize the sum to 1.
Returns array of weights that can be passed to selectRandom for non-uniform
distance-dependent selection of inputs
'''
weights = []
for el in elementList:
w = util.distance_mapping(distanceMapping, el)
weights.append(w)
# Normalize weights to sum to 1:
weights = weights/np.sum(weights)
return weights
def generateElementList(neuron, wildcardStrings=['ampa,nmda'], elementType='SynChan',
minDistance=0, maxDistance=1, commonParentOrder=0,
numBranches='all', branchOrder=None,min_length = None, min_path_length = None, max_path_length = None,branch_list = None):
'''Generate list of Moose elements between minDistance and maxDistance from
soma. if commonParent is None, then all branches considered. If numBranches
is None, then all branches included. If numBranches is not None, then n branches
that are of order branchOrder and have a commonParent order returned.
commonParent can be specified as an int where 1 = primary branch off soma,
2 = secondary branch, etc. branchOrder can be specified likewise, or with
negative integers to indicate order from terminal, e.g. -1 means a terminal
branch, -2 means a parent branch of a terminal branch, etc.
elementType controls whether to return Moose spines, synapses, or compartments.
Optional idea: specify numbranches and branchorder as a dict to have
multiple branches of different orders inclduded, e.g. {branchOrder:numBranches}
like {-1:2,1:1} would give 2 terminal branches and 1 primary branch
Examples: Add use cases
'''
# 1. Moose wildcard find from neuron using elementType.
neuron.buildSegmentTree()
allList = []
for s in wildcardStrings:
l = moose.wildcardFind(neuron.path+'/##/#'+s+'#[ISA='+elementType+']')
allList.extend(l)
#print(allList)
if branch_list is None:
possibleBranches = getBranchesOfOrder(neuron, branchOrder, n=numBranches,
commonParentOrder=commonParentOrder, min_length = min_length, min_path_length = min_path_length, max_path_length = max_path_length)
else:
possibleBranches = branch_list
bd = getBranchDict(neuron)
possibleCompartments = [comp for branch in possibleBranches for comp in bd[branch]['CompList']]
elementList = []
for el in allList:
# Get Distance of element, or parent compartment if element not compartment
el = moose.element(el)
if isinstance(el, (moose.Compartment, moose.ZombieCompartment)):
dist,name = util.get_dist_name(el)
path = el.path
elif isinstance(moose.element(el.parent),(moose.Compartment,moose.ZombieCompartment)):
dist,name = util.get_dist_name(moose.element(el.parent))
path = el.parent.path
else:
print('Invalid Element')
if any(s in name.lower() for s in ['head'.lower(),'neck'.lower()]):
dist,name = util.get_dist_name(moose.element(el.parent))
path = moose.element(path).parent
#print('#####possible compartments')
#print(possibleCompartments)
#print(name, dist, path)
if (minDistance<dist<maxDistance) and path.path in possibleCompartments:
elementList.append(el)
#print(elementList)
return elementList
def getBranchOrder(compartment):
'''Return OrderFromSoma of a dendritic compartment.
Order specified by integer, relative to soma. For a neuron with Primary,
Secondary, and Tertiary dendrites, a compartment on a primary branch would
return 1, a secondary branch compartment will return 2, and a tertiary
branch compartment will return 3.
'''
return
def getBranchDict(neuron):
'''Return a {BranchNameString: {CompList: [CompartmentsInBranchList],
BranchPath: [Soma,Primary,...CurrentBranch],
BranchOrder: IntegerValue,
BranchLength: Float in meters,
Terminal: Bool}
dictionary for all dendritic compartments of a neuron. BranchNameString
should be the compartment path string of the first compartment after a
branch point. Every Moose soma/dend compartment including the first after a
branchpoint should be in the CompList. BranchPath should be [Soma,...
currentBranch], e.g. [Soma,Primdend1,Secdend21,]. BranchOrder should be
an integer value with 0 for soma, 1 for primary branches, 2 for secondary
branches, etc. Terminal should be a boolean, True if a branch is a terminal
branch, and False if a branch is not.
Neuron must be an instance of class Moose.Neuron
'''
branchDict={}
neuron.buildSegmentTree()
#lastbranchpoint=''
def recursiveBranch(comp,lastbranchpoint):
nonlocal branchDict
children = comp.neighbors['axialOut']
if not comp.path==lastbranchpoint: # Do this if we are not at the root, soma, compartment
parentComp = comp.neighbors['handleAxial'][0]
parentCompChildren = moose.element(parentComp).neighbors['axialOut']
else: # Do this only the first time for the root soma compartment
parentCompChildren = children
lastbranchpoint = comp.path
if len(parentCompChildren)>1: # This is the first compartment of a branch
if not comp.path==lastbranchpoint: # Do this for all except soma
branchDict[comp.path] = {'BranchPath':lastbranchpoint+[comp.path]}
else: # Do this for Soma
branchDict[comp.path] = {'BranchPath':[comp.path]}
branchDict[comp.path]['BranchOrder']=len(branchDict[comp.path]['BranchPath'])-1
branchDict[comp.path]['CompList'] = [comp.path]
branchDict[comp.path]['BranchLength'] = comp.length
dist,name = util.get_dist_name(comp)
branchDict[comp.path]['MinBranchDistance'] = dist-comp.length/2
branchDict[comp.path]['MaxBranchDistance'] = dist+comp.length/2
lastbranchpoint = branchDict[comp.path]['BranchPath']
elif len(parentCompChildren)==1: # This is an additional compartment of lastbranchpoint, just append to comp list
branchDict[lastbranchpoint[-1]]['CompList'].append(comp.path)
branchDict[lastbranchpoint[-1]]['BranchLength'] += comp.length
branchDict[lastbranchpoint[-1]]['MaxBranchDistance'] += comp.length
if len(children)==0: #This is a terminal compartment
branchDict[lastbranchpoint[-1]]['Terminal'] = True
else:
branchDict[lastbranchpoint[-1]]['Terminal'] = False
for child in children: # Loop recursively through all children compartments
n = moose.element(child)
#print(branchDict)
recursiveBranch(n,lastbranchpoint)
recursiveBranch(moose.element(neuron.compartments[0]),moose.element(neuron.compartments[0]).path)
return branchDict
def mapCompartmentToBranch(neuron):
bd = getBranchDict(neuron)
compToBranchDict={}
for comp in neuron.compartments:
for k,v in bd.items():
if comp.path in bd[k]['CompList']:
compToBranchDict[comp.path]={'Branch':k}
compToBranchDict[comp.path]['BranchOrder']=bd[k]['BranchOrder']
compToBranchDict[comp.path]['Terminal']=bd[k]['Terminal']
compToBranchDict[comp.path]['BranchPath']=bd[k]['BranchPath']
return compToBranchDict
def getBranchesOfOrder(neuron,order,n=1,commonParentOrder=0, min_length = None, min_path_length = None, max_path_length = None):
'''Returns n Branches selected without replacement of specified order from
soma (0=soma, 1=primary branch, etc.). n can be an int, less than the
total number of branches of specified order, or an error will be raised.
n can b also be a string='all' to return all branches of specified order.
if order = -1, then terminal branches are selected, regardless of order from soma.
If order is None, then branches selected from any order (but with commonParent if
commonParentOrder not 0).
'''
bd = getBranchDict(neuron)
if commonParentOrder != 0:
commonParentBranch = getBranchesOfOrder(neuron,commonParentOrder)[0]
else:
commonParentBranch = neuron.compartments[0].path
if order == -1:
branchesOfOrder = [branch for branch in bd.keys() if bd[branch]['Terminal'] == True and commonParentBranch in bd[branch]['BranchPath']]
elif order is None:
branchesOfOrder = [branch for branch in bd.keys() if commonParentBranch in bd[branch]['BranchPath']]
else:
branchesOfOrder = [branch for branch in bd.keys() if order == bd[branch]['BranchOrder'] and commonParentBranch in bd[branch]['BranchPath']]
if min_length is not None:
branchesOfOrder = [branch for branch in branchesOfOrder if bd[branch]['BranchLength'] > min_length]
if min_path_length is not None:
branchesOfOrder = [branch for branch in branchesOfOrder if bd[branch]['MinBranchDistance'] <= min_path_length]
if max_path_length is not None:
branchesOfOrder = [branch for branch in branchesOfOrder if bd[branch]['MaxBranchDistance'] >= max_path_length]
if n in ['all','All','ALL']:
return branchesOfOrder
else:
nBranches = np.random.choice(branchesOfOrder, size=n, replace=False)
return nBranches
def temporalMapping(inputList, minTime = 0, maxTime = 0, random = True):
n = len(inputList)
for input in inputList:
input.delay = np.random.uniform(minTime, maxTime)
def createTimeTables(inputList,model,n_per_syn=1,start_time=0.05,freq=500.0):
from moose_nerp.prototypes import connect
num = len(inputList)
for i,input in enumerate(inputList):
sh = moose.element(input.path+'/SH')
tt = moose.TimeTable(input.path+'/tt')
tt.vector = [start_time+i*1./freq + j*num*1./freq for j in range(n_per_syn)]
#print(tt.vector)
connect.synconn(sh.path,False,tt,model.param_syn,mindel=0)
def exampleClusteredDistal(model, nInputs = 5):
for neuron in model.neurons.values():
elementlist = generateElementList(neuron[0], wildcardStrings=['ampa,nmda'], elementType='SynChan',
minDistance=180e-6, maxDistance=200e-6, commonParentOrder=0,
numBranches=1, branchOrder=-1,min_length=20e-6, max_path_length = 180e-6, min_path_length = 200e-6,
branch_list = ['/D1[0]/570_3[0]'],
#branch_list = ['/D1[0]/138_3[0]'],
)
inputs = selectRandom(elementlist,n=nInputs)
#print(inputs)
return inputs
def dispersed(model, nInputs = 100):
for neuron in model.neurons.values():
elementlist = generateElementList(neuron[0], wildcardStrings=['ampa,nmda'], elementType='SynChan',)
inputs = selectRandom(elementlist,n=nInputs)
return inputs
if __name__ == '__main__':
from moose_nerp import d1patchsample2 as model
from moose_nerp.prototypes import create_model_sim
#model.param_sim.hsolve=False
model.spineYN = True
model.calYN = True
model.synYN = True
model.SpineParams.explicitSpineDensity=1e6
model.SpineParams.spineParent = '570_3'
model.param_syn._SynNMDA.Gbar = 10e-09*1.2
model.param_syn._SynAMPA.Gbar = 1e-09
#model.morph_file = 'D1_patch_sample_3.p'
#for k,v in model.Condset.D1.NaF.items():
# model.Condset.D1.NaF[k]=0.0
model.Condset.D1.NaF[model.param_cond.dist]=0
#model.Condset.D1.SKCa[model.param_cond.dist]*=.25
#model.Condset.D1.BKCa[model.param_cond.dist]*=.25
model.Condset.D1.KaF[model.param_cond.dist]*=.5
model.Condset.D1.KaS[model.param_cond.dist]*=.25
model.Condset.D1.Kir[model.param_cond.dist]*=.5
for chan in ['CaL12','CaL13']:
for k,v in model.Condset.D1[chan].items():
#model.Condset.D1[chan][k]*=.2
model.Condset.D1[chan][model.param_cond.dist]*=1
for chan in ['CaT33']:
for k,v in model.Condset.D1[chan].items():
#model.Condset.D1[chan][k]*=10#0.000001#.#1.0e-12
model.Condset.D1[chan][model.param_cond.dist]*=2
for chan in ['CaR']:
for k,v in model.Condset.D1[chan].items():
model.Condset.D1[chan][k]*=.5#0.01#1.2#1.0e-12
#model.Condset.D1[chan][model.param_cond.dist]*=1
model.param_syn.SYNAPSE_TYPES.nmda.MgBlock.C=1
create_model_sim.setupOptions(model)
create_model_sim.setupNeurons(model)
create_model_sim.setupOutput(model)
inputs = exampleClusteredDistal(model,nInputs = 15)
spine_cur_tab = []
which_spine = inputs[0].parent
for ch in ['SKCa','CaL13','CaL12','CaR','CaT33','CaT32']:
chan = moose.element(which_spine.path+'/'+ch)
tab = moose.Table('data/'+chan.path.replace('/','__').replace('[0]',''))
moose.connect(tab,'requestOut',chan,'getGk')
spine_cur_tab.append(tab)
plotgates =['CaR','CaT32','CaT33','CaL12','CaL13']
model.gatetables = {}
for plotgate in plotgates:
model.gatetables[plotgate] = {}
gatepath = which_spine.path+'/'+plotgate
gate = moose.element(gatepath)
gatextab=moose.Table('/data/'+plotgate+'_gatex')
moose.connect(gatextab, 'requestOut', gate, 'getX')
model.gatetables[plotgate]['gatextab']=gatextab
gateytab=moose.Table('/data/'+plotgate+'_gatey')
moose.connect(gateytab, 'requestOut', gate, 'getY')
model.gatetables[plotgate]['gateytab']=gateytab
if model.Channels[plotgate][0][2]>0:
gateztab=moose.Table('/data/'+plotgate+'_gatez')
moose.connect(gateztab, 'requestOut', gate, 'getZ')
model.gatetables[plotgate]['gateztab']=gateztab
#dispersed_inputs = dispersed(model, nInputs = 100)
createTimeTables(inputs,model,n_per_syn=3)
#createTimeTables(dispersed_inputs,model,n_per_syn=2,start_time=0.01,freq=100.0)
#c = moose.element('D1/634_3')
#c.Rm = c.Rm*100
moose.reinit()
moose.start(.4)
create_model_sim.neuron_graph.graphs(model, model.vmtab, False,.4)
from matplotlib import pyplot as plt
plt.ion()
plt.show()
plt.figure()
for i in model.spinevmtab[0]:
t = np.linspace(0,.4,len(i.vector))
plt.plot(t,i.vector)
n = model.neurons['D1'][0]
d_vs_len = [(p,c.diameter) for c,p in zip(n.compartments,n.geometricalDistanceFromSoma)]
d_vs_len = np.array(d_vs_len)
plt.figure()
plt.scatter(d_vs_len[:,0],d_vs_len[:,1])
plt.figure()
for cur in spine_cur_tab:
plt.plot(cur.vector,label=cur.name.strip('_'))
plt.legend()
create_model_sim.plot_channel.plot_gate_params(moose.element('/library/CaT32'),3)
for c,d in model.gatetables.items():
plt.figure()
plt.title(c)
for g,t in d.items():
plt.plot(t.vector,label=g)
plt.legend()