# Contains maximal conductances, name of .p file(neuron morphology file), and some other parameters
import numpy as np
from moose_nerp.prototypes import util as _util
if False: # param_sim.Config['ghkYN']:
ghKluge=0.35e-6
else:
ghKluge=1
ConcOut=2e-3 # default for GHK is 2e-3
Temp=30 # Celsius, needed for GHK objects, some channels
neurontypes = None
# _neurontypes = None
#def neurontypes(override=None):
# "Query or set names of neurontypes of each neuron created"
# global _neurontypes
# if override is None:
# return _neurontypes if _neurontypes is not None else sorted(Condset.keys())
# else:
# if any(key not in Condset.keys() for key in override):
# raise ValueError('unknown neuron types requested')
# _neurontypes = override
# NOTE: Morph file is neuron shape file (*.p) in the model root directory.
#morph_file = {'squid':'squid.p'} # Single compartment Squid morphology model.
morph_file = {'squid':'squid_10C.p'} # ten compartments Squid morphology model.
NAME_SOMA='axon' # Parent compartment to simulate squid axon where NAME_SOMA is application variable.
#CONDUCTANCES
# helper variables to index the Conductance and synapses with distance
#axon cylindrical so x,y=0,0, 1e-6 means parent compartment only for spherical.
prox = (0,1e-3) # Length Range of the proximal dendrite from center of soma.
dist = (1e-3, 100e-3)
# Channel conductances declaration for the squid axon.
_squid = _util.NamedDict(
'squid',
K={prox: 360, dist: 560}, # Potassium channel g_bar to the squid axon surface.
Na={prox: 1200, dist: 1000}, # Sodium channel g_bar to the squid axon surface.
)
# Channel conductances
Condset = _util.NamedDict(
'Condset',
squid = _squid,
)