# -*- coding:utf-8 -*-
from __future__ import print_function, division
def moose_main(corticalinput):
import logging
import numpy as np
import matplotlib.pyplot as plt
#plt.ion()
from pprint import pprint
import moose
from moose_nerp.prototypes import (create_model_sim,
cell_proto,
clocks,
inject_func,
create_network,
tables,
net_output,
logutil,
util,
standard_options)
from moose_nerp import d1opt as model
from moose_nerp import str_net as net
from moose_nerp.graph import net_graph, neuron_graph, spine_graph
#additional, optional parameter overrides specified from with python terminal
#model.Condset.D1.NaF[model.param_cond.prox] /= 3
#model.Condset.D1.KaS[model.param_cond.prox] *= 3
net.connect_dict['D1']['ampa']['extern1'].dend_loc.postsyn_fraction = 0.8
net.param_net.tt_Ctx_SPN.filename = corticalinput
print('cortical_fraction = {}'.format(net.connect_dict['D1']['ampa']['extern1'].dend_loc.postsyn_fraction))
model.synYN = True
model.plasYN = True
model.calYN = True
model.spineYN = True
net.single=True
create_model_sim.setupOptions(model)
param_sim = model.param_sim
param_sim.useStreamer = True
param_sim.plotdt = .1e-3
param_sim.stim_loc = model.NAME_SOMA
param_sim.stim_paradigm = 'inject'
param_sim.injection_current = [0] #[-0.2e-9, 0.26e-9]
param_sim.injection_delay = 0.2
param_sim.injection_width = 0.4
param_sim.simtime = 21
net.num_inject = 0
net.confile = 'str_connect_plas_simd1opt_{}_corticalfraction_{}'.format(net.param_net.tt_Ctx_SPN.filename,0.8)
if net.num_inject==0:
param_sim.injection_current=[0]
#################################-----------create the model: neurons, and synaptic inputs
model=create_model_sim.setupNeurons(model,network=not net.single)
all_neur_types=model.neurons
#FSIsyn,neuron = cell_proto.neuronclasses(FSI)
#all_neur_types.update(neuron)
population,connections,plas=create_network.create_network(model, net, all_neur_types)
###### Set up stimulation - could be current injection or plasticity protocol
# set num_inject=0 to avoid current injection
if net.num_inject<np.inf :
inject_pop=inject_func.inject_pop(population['pop'],net.num_inject)
else:
inject_pop=population['pop']
#Does setupStim work for network?
#create_model_sim.setupStim(model)
pg=inject_func.setupinj(model, param_sim.injection_delay,param_sim.injection_width,inject_pop)
moose.showmsg(pg)
##############--------------output elements
if net.single:
#fname=model.param_stim.Stimulation.Paradigm.name+'_'+model.param_stim.location.stim_dendrites[0]+'.npz'
#simpath used to set-up simulation dt and hsolver
simpath=['/'+neurotype for neurotype in all_neur_types]
create_model_sim.setupOutput(model)
else: #population of neurons
spiketab,vmtab,plastab,catab=net_output.SpikeTables(model, population['pop'], net.plot_netvm, plas, net.plots_per_neur)
#simpath used to set-up simulation dt and hsolver
simpath=[net.netname]
clocks.assign_clocks(simpath, param_sim.simdt, param_sim.plotdt, param_sim.hsolve,model.param_cond.NAME_SOMA)
if model.synYN and (param_sim.plot_synapse or net.single):
#overwrite plastab above, since it is empty
syntab, plastab, stp_tab=tables.syn_plastabs(connections,model)
nonstim_plastab = tables.nonstimplastabs(plas)
# Streamer to prevent Tables filling up memory on disk
# This is a hack, should be better implemented
if param_sim.useStreamer==True:
allTables = moose.wildcardFind('/##[ISA=Table]')
streamer = moose.Streamer('/streamer')
streamer.outfile = 'plas_simd1opt_{}_corticalfraction_{}.npy'.format(net.param_net.tt_Ctx_SPN.filename,0.8)
moose.setClock(streamer.tick,0.1)
for t in allTables:
if any (s in t.path for s in ['plas','VmD1_0','extern','Shell_0']):
streamer.addTable(t)
else:
t.tick=-2
################### Actually run the simulation
def run_simulation(injection_current, simtime):
print(u'◢◤◢◤◢◤◢◤ injection_current = {} ◢◤◢◤◢◤◢◤'.format(injection_current))
pg.firstLevel = injection_current
moose.reinit()
moose.start(simtime,True)
traces, names = [], []
for inj in param_sim.injection_current:
run_simulation(injection_current=inj, simtime=param_sim.simtime)
weights = [w.value for w in moose.wildcardFind('/##/plas##[TYPE=Function]')]
plt.figure()
plt.hist(weights,bins=100)
plt.title('plas_sim_{}_corticalfraction_{}'.format(net.param_net.tt_Ctx_SPN.filename,cortical_fraction))
plt.savefig('plas_simd1opt_{}_corticalfraction_{}.png'.format(net.param_net.tt_Ctx_SPN.filename,0.8))
if param_sim.useStreamer==True:
import atexit
atexit.register(moose.quit)
return weights
def multi_main():
from multiprocessing.pool import Pool
p = Pool(4,maxtasksperchild=1)
# Apply main simulation varying cortical fractions:
cfs = ['FullTrialLowVariability', 'FullTrialHighVariability','FullTrialHigherVariability']
results = p.map(moose_main,cfs)
return dict(zip(cfs,results))
if __name__ == "__main__":
print('runningmain')
results = multi_main()