#param_net.py
####################### Populations
from moose_nerp.prototypes.util import NamedList
from moose_nerp.prototypes.ttables import TableSet
from moose_nerp.prototypes import util as _util
neur_distr=NamedList('neur_distr', 'neuronname spacing percent')
netname='/gp'
confile='gp_connect'
outfile='gp_out'
spacing=54e-6 #Fig. 2 Hernandez Parvabinum+ Neurons and Npas1+ Neurons 2015
#pv+: 54e-6 n=41, npas1+: 60e-6 n=33, calculated by measuring distance between neuron pairs and calculating mean
#0,1,2 refer to x, y and z
grid={}
grid[0]={'xyzmin':0,'xyzmax':200e-6,'inc':spacing}
grid[1]={'xyzmin':0,'xyzmax':200e-6,'inc':spacing}
grid[2]={'xyzmin':0,'xyzmax':0,'inc':0}
#Do not include a neuron type in pop_dict if the proto not created
neuron1pop=neur_distr(neuronname='proto', spacing=grid,percent=0.54) #Table 2 Hernandez Parvabinum+ Neurons and Npas1+ Neurons 2015
#calculated from percent composition of PV+=proto, Npas1+/FoxP2+=arky
neuron2pop=neur_distr(neuronname='arky', spacing=grid,percent=0.46)
pop_dict={'proto':neuron1pop,'arky': neuron2pop}
#from arky140F - loc _0, unless CV close to 1
chanSTD_arky = {
'KDr': 0.0397,
'Kv3': 0.0386,
'KvS': 0.0743,
'KvF': 0.0173,
'KCNQ': 0.0267,
'BKCa': 0.0238,
'SKCa': 0.295,
'HCN1': 0.2454,
'HCN2': 0.253,
'Ca': 0.1671,
'NaF': 0.0635,
'NaS': 0.215,
}
#from proto154 - loc _0, unless CV close to 1
chanSTD_proto = {
'KDr': 0.0487,
'Kv3': 0.0177,
'KvS': 0.0306,
'KvF': 0.0114,
'HCN1': 0.139,
'HCN2': 0.175,
'KCNQ': 0.068,
'Ca': .0384,
'NaF': 0.0302,
'NaS': 0.1308,
'BKCa': 0.0496,
'SKCa': 0.2048,
}
chanvar={'proto':chanSTD_arky, 'arky':chanSTD_proto}
####################### Connections
#for improved NetPyne correspondance: change synapse to synMech, change pre to source
#Two types of probabilities controlling the connections
#A. probability of connecting two different neurons. NamedList('connect'Parameters include
#A1. constant probability
#A2. space_const: allows distance dependent connection, where distance is measured between pre- and post-synaptic neuron's cell bodies
#A3. num_conns allows a single pre-synaptic cell to make more than one connection on the post-synaptic cell
#B. dend_loc, which controls the dendritic location of post-synaptic target as follows
#mindist, maxdist, half_dist, steep are alternatives to postsyn_fraction
#connect_prob=0 if dist<mindist
#connect_prob=0 if dist>maxdist
#connect_prob = probability if dist between mindist and maxdist, or
#if half_dist is defined:
#for steep>0: connect_prob=1 if dist>maxdist and 0 if dist<mindist
#connect_prob=(dist-mindist)^steep/((dist-mindist)^steep+half_dist^steep)
#make steep<0 to switch slope and have connect_prob=1 if dist<mindist and 0 if dist>maxdist
#do not use steep (or set to zero) to have constant connection probability between min and maxdist
#Intrinsic (within network) connections specified using NamedList('connect'
#Extrinsic (external time table) connections specified using NamedList('ext_connect'
#post syn fraction: what fraction of synapse is contacted by time tables specified in pre
dend_location=NamedList('dend_location','mindist=0 maxdist=1 maxprob=None half_dist=None steep=0 postsyn_fraction=None')
#probability for intrinsic is the probability of connecting pre and post.
connect=NamedList('connect','synapse pre post num_conns=2 space_const=None probability=None dend_loc=None')
ext_connect=NamedList('ext_connect','synapse pre post dend_loc=None')
#tables of extrinsic inputs
#first string is name of the table in moose, and 2nd string is name of external file
#tt_STN = TableSet('tt_STN', 'Ctx_4x4',syn_per_tt=2)
#tt_Str_SPN = TableSet('tt_Str', 'Thal_4x4',syn_per_tt=2)
#description of intrinsic inputs
ConnSpaceConst=500e-6
neur1pre_neur1post=connect(synapse='gaba', pre='proto', post='proto', space_const=ConnSpaceConst)#internal post syn fraction in 10% Shink Smith 1995
neur1pre_neur2post=connect(synapse='gaba', pre='proto', post='arky', space_const=ConnSpaceConst)
neur2pre_neur1post=connect(synapse='gaba', pre='arky', post='proto', space_const=ConnSpaceConst)
neur2pre_neur2post=connect(synapse='gaba', pre='arky', post='arky', space_const=ConnSpaceConst)
#description of synapse and dendritic location of extrinsic inputs
STN_distr=dend_location(postsyn_fraction=0.25)
#ext2_neur1post=ext_connect(synapse='ampa',pre=tt_STN,post='proto', dend_loc=STN_distr)# Corbit Whalen 2016 Table 2 connectivity parameters: Chumhma 2011, Shink Smith 1995, Miguelez 2012
#ext1_neur1post=ext_connect(synapse='gaba',pre=tt_Str_SPN,post='proto', dend_loc=Str_distr)#ext1 = Str
#ext2_neur2post=ext_connect(synapse='ampa',pre=tt_STN,post='arky', dend_loc=STN_distr)#ext2 STN
#ext1_neur2post=ext_connect(synapse='gaba',pre=tt_Str_SPN,post='arky', dend_loc=Str_distr)
#Collect all connection information into dictionaries
#1st create one dictionary for each post-synaptic neuron class
proto={}
arky={}
#connections further organized by synapse type
#the dictionary key for tt must have 'extern' in it
proto['gaba']={'proto': neur1pre_neur1post, 'arky': neur2pre_neur1post}
#proto['gaba']={'proto': neur1pre_neur1post, 'arky': neur2pre_neur1post, 'extern': ext1_neur1post}
#proto['ampa']={'extern': ext2_neur1post}
arky['gaba']={'proto': neur1pre_neur2post, 'arky': neur2pre_neur2post}
#arky['gaba']={'proto': neur1pre_neur2post, 'arky': neur2pre_neur2post, 'extern': ext1_neur2post}
#arky['ampa']={'extern': ext2_neur2post}
#Then, collect the post-synaptic dictionaries into a single dictionary.
#for NetPyne correspondance: change connect_dict to connParams
connect_dict={}
connect_dict['proto']=proto
connect_dict['arky']=arky
# m/sec - GABA and the Basal Ganglia by Tepper et al
cond_vel=0.8 #conduction velocity
mindelay=1e-3