/*----------------------------------------------------------------------------
demo file
---------
Simulations of networks using the object-oriented ability of NEURON
5 neurons connected with GABA-A synapses
Second-neighbor connections along a ring:
(every cell connects all the others, except itself)
cell1 - cell2
| |
cell3 cell4
\ /
cell5
Idem Fig.6C of the J Neurophysiol. paper
WARNING: to obtain patterns similar to Fig6c, use a max stimulation
amplitude of -0.02 nA and 20000 as simulation time...
Reference:
Destexhe, A., Contreras, D., Sejnowski, T.J. and Steriade, M. A model of
spindle rhythmicity in the isolated reticular thalamus. Journal of
Neurophysiology 72: 803-818, 1994.
See also:
http://www.cnl.salk.edu/~alain
http://cns.fmed.ulaval.ca
----------------------------------------------------------------------------*/
//----------------------------------------------------------------------------
// load and define general graphical procedures
//----------------------------------------------------------------------------
//xopen("$(NEURONHOME)/lib/hoc/stdrun.hoc")
objectvar g[20] // max 20 graphs
ngraph = 0
proc addgraph() { local ii // define subroutine to add a new graph
// addgraph("variable", minvalue, maxvalue)
ngraph = ngraph+1
ii = ngraph-1
g[ii] = new Graph()
g[ii].size(0,tstop,$2,$3)
g[ii].xaxis()
g[ii].yaxis()
g[ii].addvar($s1,1,0)
g[ii].save_name("graphList[0].")
graphList[0].append(g[ii])
}
if(ismenu==0) {
nrnmainmenu() // create main menu
nrncontrolmenu() // create control menu
ismenu=1
}
//----------------------------------------------------------------------------
// general parameters
//----------------------------------------------------------------------------
dt=0.1
tstop = 5000
runStopAt = tstop
steps_per_ms = 5
celsius = 36
v_init = -70
//----------------------------------------------------------------------------
// create cells
//----------------------------------------------------------------------------
load_file("RE.tem") // load template for RE cell
ncells = 5 // sets the number of cells
objectvar RE[ncells] // create an array of object variables
for(i=0; i<ncells; i=i+1) {
RE[i] = new REcell() // create RE cells from template
}
//----------------------------------------------------------------------------
// create connections
//----------------------------------------------------------------------------
print " "
print " << Defining connectivity ... >>"
print " "
// The connectivity is defined here in a 1-dim ring of neurons;
// each neuron is connected to its neighbors according to a mininal (layer_min)
// and a maximal (layer_max) distance.
layer_min = 1 // first neighbors
layer_max = 2
neighmax = 1 + 2 * layer_max // cells in neighborhood
neighmin = 1 + 2 * (layer_min-1) // cells not in neighborhood
if(layer_min == 0) neighmin = 0
neigh = neighmax-neighmin // nb of cells connected
print " "
print " << Number of synapses per cell: ",neigh," >>"
print " "
objectvar syn[ncells][neigh] // create object variables for synapses
for(i=0; i<ncells; i=i+1) { // scan over each cell
ns = 0
for(k=(i-layer_max); k<(i+layer_max+1); k=k+1) { // scan over postsyn
if(k < 0) { // boundaries = PERIODIC
j = ncells + k
} else if(k >= ncells) {
j = k - ncells
} else {
j = k
}
dis = abs(i-k)
if( (dis >= layer_min) && (dis <= layer_max) ) { // distance OK?
print "<< GABA synapse from cell ",i," to cell ",j," >>"
syn[i][ns] = new GABA()
RE[j].soma syn[i][ns].loc(0.5) // j is postsynaptic
setpointer syn[i][ns].pre, RE[i].soma.v(0.5) // i is presynaptic
ns = ns + 1 // update synapse counter
}
}
}
print " "
//----------------------------------------------------------------------------
// create procedure for setting the synaptic weights
//----------------------------------------------------------------------------
proc assign_synapses() { // assign a value to all synapses
for(i=0; i<ncells; i=i+1) { // scan over each cell
for(j=0; j<neigh; j=j+1) { // scan over each connection
syn[i][j].gmax = $1 // assign value of gmax
}
}
}
assign_synapses(0.25) // assign value (in uS) to each synapse
// sum of all synapses 1ust be of 1uS
// for each cell
//----------------------------------------------------------------------------
// insert random current pulse in each neuron
//----------------------------------------------------------------------------
objectvar RG,Pulse[ncells] // create object variables
RG = new Random() // create random generator
for (i=0; i<ncells; i=i+1) {
print "defining current pulse in RE[",i,"]"
RE[i].soma Pulse[i] = new IClamp(.5) // create current stim
// note: for older versions of NEURON, please use PulseStim instead of IClamp
Pulse[i].dur = 200 // fixed duration
Pulse[i].amp = RG.uniform(0,-0.02) // random amplitude
Pulse[i].del = RG.uniform(0,2000) // random latency
}
//----------------------------------------------------------------------------
// add graphs
//----------------------------------------------------------------------------
print " "
print " << Creating graphics ... >>"
print " "
for(i=0; i<ncells; i=i+1) {
addgraph("RE[i].soma.v(0.5)",-100,20)
}