TITLE NMDA synapse for nucleus accumbens model
: see comments below
NEURON {
POINT_PROCESS NMDA
RANGE gbar, ca_ratio, tau_r, tau_d, scale, spkcnt, countflag, mg, i, ical, t1, itmp, qfact
NONSPECIFIC_CURRENT i
USEION cal WRITE ical VALENCE 2
POINTER mu
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(umho) = (micromho)
(mM) = (milli/liter)
}
PARAMETER {
gbar = 12.2e-5 (umho): Dalby 2003 - one channel = 60 pS, 4-5 channels/synapse
: G=i/(Vm-Erev) = 300 pS with Erev = ~0mV
tau_r = 5.63 (ms) : Chapman DE 2003, Table 1 - rise tau
tau_d = 320 (ms) : Chapman DE 2003, Fig 2B Ventromedial - decay tau
Erev = 0 (mV) : reversal potential, Dalby 2003
saturation = 7.0 : causes the conductance to saturate - matched to
: Mainen 1999 - 2nd spike 10 ms later is 1.8 * first
qfact = 2 : convert to 35 degC - Gutfreund, Table 7.1
mg = 1 (mM) : external magnesium concentration
ca_ratio = 0.01:0.1 : ratio of calcium current to total current
: Burnashev/Sakmann J Phys 1995 485 403-418
}
ASSIGNED {
g (umho)
v (mV) : postsynaptic voltage
itmp (nA) : temp value of current
i (nA) : nonspecific current = g*(v - Erev)
ical (nA) : calcium current through NMDA synapse (Carter/Sabatini)
t1 (ms)
y1_add (/ms) : value added to y1 when a presynaptic spike is registered
y1_loc (/ms)
spkcnt : counts number of events delivered to synapse
countflag : start/stop counting
B : voltage dependendent magnesium blockade
scale : scale allows the current to be scaled by weight
mu (1)
} : so NetCon(...,2) gives 2*the current as NetCon(...,1)
STATE {
y1 (/ms)
y2 : sum of beta-functions, describing the total conductance
}
INITIAL {
y1_add = 0
B = mgblock(v)
scale = 1
spkcnt = 0
countflag = 0
t1 = 0
y1_loc = 0
}
BREAKPOINT {
SOLVE betadyn METHOD cnexp
mgblock(v)
g = gbar * y2
itmp = scale * g * B * (v - Erev) : split i into nonspecific and calcium parts
i = (1-ca_ratio) * itmp
ical = ca_ratio * itmp
}
DERIVATIVE betadyn {
: dynamics of the beta-function, from [2]
y1' = -y1 / (tau_d/qfact)
y2' = y1 - y2 / (tau_r/qfact)
}
NET_RECEIVE( weight, y1_loc (/ms)) {
: updating the local y1 variable
y1_loc = y1_loc*exp( -(t - t1) / (tau_d/qfact) )
: y1_add is dependent on the present value of the local
: y1 variable, y1_loc
y1_add = (1 - y1_loc/saturation)
: update the local y1 variable
y1_loc = y1_loc + y1_add
: presynaptic spike is finaly registered
y1 = y1 + y1_add
: store the spike time
t1 = t
spkcnt = spkcnt + 1
scale = weight * ((mu-1)*0.3+1)
}
PROCEDURE mgblock( v(mV) ) {
: from Jahr & Stevens
TABLE B DEPEND mg
FROM -100 TO 100 WITH 201
B = 1 / (1 + exp(0.062 (/mV) * -v) * (mg / 3.57 (mM)))
}
COMMENT
Author Johan Hake (c) spring 2004
: Summate input from many presynaptic sources and saturate
: each one of them during heavy presynaptic firing
: [1] Destexhe, A., Z. F. Mainen and T. J. Sejnowski (1998)
: Kinetic models of synaptic transmission
: In C. Koch and I. Segev (Eds.), Methods in Neuronal Modeling
: [2] Rotter, S. and M. Diesmann (1999) Biol. Cybern. 81, 381-402
: Exact digital simulation of time-invariant linear systems with application
: to neural modeling
Mainen ZF, Malinow R, Svoboda K (1999) Nature. 399, 151-155.
Synaptic calcium transients in single spines indicate that NMDA
receptors are not saturated.
Chapman DE, Keefe KA, Wilcox KS (2003) J Neurophys. 89: 69-80.
Evidence for functionally distinct synaptic nmda receptors in ventromedial
vs. dorsolateral striatum.
Dalby, N. O., and Mody, I. (2003). Activation of NMDA receptors in rat
dentate gyrus granule cells by spontaneous and evoked transmitter
release. J Neurophysiol 90, 786-797.
Jahr CE, Stevens CF. (1990) Voltage dependence of NMDA activated
macroscopic conductances predicted by single channel kinetics. J
Neurosci 10: 3178, 1990.
Gutfreund H, Kinetics for the Life Sciences, Cambridge University Press, 1995, pg 234.
(suggested by Ted Carnevale)
ENDCOMMENT