clear all
close all
clc
%% Fixed parameters across all simulations
dt = 0.00001; %time step
N = 2000; %Network Size
td = 0.02; %decay time
tr = 0.002; %Rise time
%%
T = 15; tmin = 5; tcrit = 10; nt = round(T/dt); tx = (1:1:nt)*dt; xz = sin(2*tx*pi*5)'; G = 10; Q = 10^4;
%%
m = min(size(xz)); %dimensionality of teacher
E = Q*(2*rand(N,m)-1); %encoders
BPhi = zeros(N,m); %Decoders
%% Compute Neuronal Intercepts and Tuning Curves
initial = 0;
p = 0.1; %Sparse Coupling
OMEGA = G*randn(N,N).*(rand(N,N)<p)/(sqrt(N)*p); %Random initial weight matrix
%Set the sample row mean of the weight matrix to be 0 to strictly enforce
%balance.
for i = 1:1:N
QS = find(abs(OMEGA(i,:))>0);
OMEGA(i,QS) = OMEGA(i,QS) - sum(OMEGA(i,QS))/length(QS);
end
%% Storage Matrices and Initialization
store = 10; %don't store every time step, saves time.
current = zeros(nt,m); %storage variable for output current
IPSC = zeros(N,1); %post synaptic current
h = zeros(N,1); r = zeros(N,1); hr = zeros(N,1);
JD = 0*IPSC;
vpeak = pi; %peak and reset
vreset = -pi;
v = vreset + (vpeak-vreset)*rand(N,1); %initialze voltage
v_ = v; %temporary storage variable for integration
j = 1;
time = zeros(round(nt/store),1);
RECB = zeros(5,round(2*round(nt/store)));
REC = zeros(10,round(nt/store));
tspike = zeros(8*nt,2);
ns = 0;
tic
SD = 0;
BPhi = zeros(N,m);
z = zeros(m,1);
step = 50; %Sets the frequency of RLS
imin = round(tmin/dt); %Start RLS
icrit = round((tcrit/dt)); %Stop RLS
Pinv = eye(N)*dt;
i = 1;
%%
ilast = i;
%icrit = ilast;
for i = ilast :1:nt
JX = IPSC + E*z; %current
dv = 1-cos(v) + (1+cos(v)).*JX*(pi)^2; %dv
v = v_ + dt*(dv); %Euler integration plus refractory period.
index = find(v>=vpeak);
if length(index)>0
JD = sum(OMEGA(:,index),2); %compute the increase in current due to spiking
tspike(ns+1:ns+length(index),:) = [index,0*index+dt*i];
ns = ns + length(index);
end
if tr == 0
IPSC = IPSC*exp(-dt/td)+ JD*(length(index)>0)/(td);
r = r *exp(-dt/td) + (v>=vpeak)/td;
else
IPSC = IPSC*exp(-dt/tr) + h*dt;
h = h*exp(-dt/td) + JD*(length(index)>0)/(tr*td); %Integrate the current
r = r*exp(-dt/tr) + hr*dt;
hr = hr*exp(-dt/td) + (v>=vpeak)/(tr*td);
end
v = v + (vreset - v).*(v>=vpeak); %reset with spike time interpolant implemented.
v_ = v;
%only store stuff every index variable.
z = BPhi'*r;
err = z - xz(i,:)';
if mod(i,step)==1
if i > imin
if i < icrit
cd = Pinv*r;
BPhi = BPhi - (cd*err');
Pinv = Pinv - ((cd)*(cd'))/( 1 + (r')*(cd));
end
end
end
if mod(i,store) == 1;
j = j + 1;
time(j,:) = dt*i;
current(j,:) = z;
REC(:,j) = v(1:10);
RECB(:,j) = BPhi(1:5,1);
end
if mod(i,round(0.1/dt))==1
figure(1)
drawnow
plot(tx(1:1:i),xz(1:1:i,:),'k','LineWidth',2), hold on
plot(time(1:1:j),current(1:1:j,:),'b--','LineWidth',2), hold off
xlim([dt*i-1,dt*i])
xlabel('Time')
ylabel('x(t)')
figure(2)
plot(time(1:1:j),RECB(1:5,1:1:j),'.')
xlabel('Time')
ylabel('\phi_j')
figure(3)
plot(tspike(1:1:ns,2), tspike(1:1:ns,1),'k.')
ylim([0,100])
xlabel('Time')
ylabel('Neuron Index')
end
end
%%
%ns
current = current(1:1:j,:);
REC = REC(:,1:1:j);
%REC2 = REC2(:,1:1:j);
nt = length(current);
time = (1:1:nt)*T/nt;
xhat = current;
tspike = tspike(1:1:ns,:);
M = tspike(tspike(:,2)>dt*icrit,:);
AverageFiringRate = length(M)/(N*(T-dt*icrit))
%%
Z = eig(OMEGA); %Eigenvalues pre-learning
Z2 = eig(OMEGA+E*BPhi'); %Eigenvalues post-learning
figure(42)
plot(Z,'k.'), hold on
plot(Z2,'r.')
xlabel('Re\lambda')
ylabel('Im\lambda')
legend('Pre-Learning','Post-Learning')
%% plot neurons pre- and post- learning
figure(43)
for z = 1:1:10
plot((1:1:j)*T/j,(REC(z,1:1:j))/(2*pi)+z), hold on
end
xlim([9,10])
xlabel('Time (s)')
ylabel('Neuron Index')
title('Post Learning')
figure(66)
for z = 1:1:10
plot((1:1:j)*T/j,(REC(z,1:1:j))/(2*pi)+z), hold on
end
xlim([0,1])
title('Pre-Learning')
xlabel('Time (s)')
ylabel('Neuron Index')
%%