function SingPRWithSyn = SingIntegODE23PRWithSynWithIntegParam_db(aPR,uAmpsPermsecCm2,VsPreSyn,Syn,delay,Tend,VdsOut,VsThresh,SomaInj,termaftevent,varargin)
% 5/24/2015
%% What it does:
% Intgegrates the polarized PR neuron and applies EITHER a current ramp
% AMPA or NMDA synaptic currents. This routine uses ODE 23 although ODE45 has also been used. ODE 23 was
% found to be faster than ODE45 and the solutions were identical to within
% machine precisions
%% Changes
% 7/4/2015. Added varargin for integration params RelErr,AbsErr,MaxStep
%% Dependencies
% # *Kinetic gating variables* $\alpha$ and $\beta$ functions
% 12 total 6 $\alpha$ and 6 $\beta$ for each of
% m,n,h,s,c,q
%% Inputs
%%
%
% # *aPR* -- is a structure class defined by using InitPR
% # *uAmpsPermsecCm2* -- is the slope of the injected current ramp note units
% this is M/1000, Where $M$ is per sec
% # *delay* -- ms of delay before ramp starts
% # *Tend* -- maximum time ode runs
% # *VdsOut* -- the polarization expressed in potential difference outised cell
% from dendrite to soma
% # *VsThresh* --the soma potential at which spike is said to occure and TTFS
% is measured
% # *SomaInj* -- If true injected current ramp goes into soma if False it is
% injected into dendrite
% # *termafterevent* -- to terminate after Vs passes through VsThresh
% applied to dendrite
%% Optional Inputs
%
% # varargin{1} = *RelTol*. scalar error
% # varargin{2} = *AbsTol*. vector error
% # varargin{3} = *MaxStep*. Maximum step siez.
past=0; %initialize the falg for wether or not a spike has occured
nargin=size(varargin{1},2);
if nargin == 0 || isempty(nargin)
options = odeset('RelTol',1e-4,'Stats','off','MaxStep',1e-1,'Refine',4,'Events',@events,...
'OutputSel',1);
elseif nargin == 1
options = odeset('RelTol',varargin{1}(1,1),'Stats','off','MaxStep',1e-1,'Refine',4,'Events',@events,...
'OutputSel',1);
elseif nargin == 2
options = odeset('RelTol',varargin{1}(1,1),'AbsTol',varargin{1}(1,2),'Stats','off','MaxStep',1e-1,'Refine',4,'Events',@events,...
'OutputSel',1);
elseif nargin == 3
options = odeset('RelTol',varargin{1}(1,1),'AbsTol',varargin{1}(1,2),'Stats','off','MaxStep',varargin{1}(1,3),'Refine',4,'Events',@events,...
'OutputSel',1);
end
%% Initial state of ODE set prior to this subroutine and stored in aPR.SS
multPRInitY=zeros(1,10);
multPRInitY(1,1)=aPR.SS.NumSS(1);
multPRInitY(1,2)=aPR.SS.NumSS(2);
multPRInitY(1,3)=aPR.SS.NumSS(3);
multPRInitY(1,4)=aPR.SS.NumSS(4);
multPRInitY(1,5)=aPR.SS.NumSS(5);
multPRInitY(1,6)=aPR.SS.NumSS(6);
multPRInitY(1,7)=aPR.SS.NumSS(7);
multPRInitY(1,8)=aPR.SS.NumSS(8);
multPRInitY(1,9)=0;
multPRInitY(1,10)=0;
%% Reshape to use in MATLAB integrator
multPRInitYCol=zeros(10,1);
multPRInitYCol=reshape(multPRInitY,10,1);
%% Call Ode34 to integrate function defined in PR94NoSyn
[T,YMultcol,te,ye,ie] = ode23(@(t,Y) PR94Syn(t,Y),[0 Tend],multPRInitYCol,options);
% SingPRWithSyn is the structure containing the results of the
% integration with metadat like the filename date and run time.
SingPRWithSyn.te = te;
SingPRWithSyn.ye = ye;
SingPRWithSyn.ie = ie;
SingPRWithSyn.YMultcol=YMultcol;
SingPRWithSyn.T = T;
SingPRWithSyn.etime=toc;
SingPRWithSyn.datetime=datestr(now);
SingPRWithSyn.file=mfilename;
SingPRWithSyn.PR=aPR;
SingPRWithSyn.NumN=1;
SingPRWithSyn.uAmpsPerCm2=uAmpsPermsecCm2;
SingPRWithSyn.VdsOut=VdsOut;
SingPRWithSyn.Tend=Tend;
SingPRWithSyn.delay=delay;
if isempty(te)
SingPRWithSyn.idxteVs=size(T,1);
else
SingPRWithSyn.idxteVs=find(T>=te(1,1),1,'First');
end
%toc
SingPRWithSyn.etime=toc;
SingPRWithSyn.datetime=datestr(now);
SingPRWithSyn.file=mfilename;
function dY = PR94Syn(t,Y)
Nn=sqrt(size(Y,1));
Y = reshape(Y,1,10);
if t > delay
if SomaInj==true
if(Y(1,1) >= VsThresh | past == 1)
Isinj =aPR.Isinj;
past = 1;
else
Isinj=aPR.Isinj+heaviside(t-delay)*uAmpsPermsecCm2*(t-delay);
end
Idinj=aPR.Idinj;
else
if Y(1,1) >= VsThresh
Idinj =aPR.Idinj;
else
Idinj=aPR.Idinj+heaviside(t-delay)*uAmpsPermsecCm2*(t-delay);
end
Isinj=aPR.Isinj;
end
else %t less than delay
Isinj=aPR.Isinj;
Idinj=aPR.Idinj;
end
Cm=aPR.Cm;
gL=aPR.gL;
gNa=aPR.gNa;
gKDR=aPR.gKDR;
gKC=aPR.gKC;
gKAHP=aPR.gKAHP;
gCa=aPR.gCa;
ENa=aPR.ENa; %CHECK not sure this is good idea to double the # variable inside function to be integrated
Ek=aPR.Ek;
EL=aPR.EL;
ECa=aPR.ECa;
p=aPR.p;
gc=aPR.gc;
WRT=aPR.WRT;
Vsyn=aPR.Vsyn;
MaxS=aPR.MaxS;
gNMDA=Syn.gNMDA;
gAMPA=Syn.gAMPA;
VsPreAmp=VsPreSyn.Amp;
t_initexc=VsPreSyn.t_initexc;
t_spkdur=VsPreSyn.t_spkdur;
if Y(9) > MaxS
Y(9)=MaxS;
end;
expNMDA=1./(1+0.28*exp(-0.062*(Y(2)-60)));
INMDA=gNMDA*Y(2).*Y(9).*expNMDA-gNMDA*Vsyn*Y(9).*expNMDA;
IAMPA=gAMPA*Y(10).*Y(2)-gAMPA*Vsyn*Y(10);
VsPre=VsPreAmp*heaviside(t-t_initexc)*heaviside(t_initexc+t_spkdur-t);
dY = zeros(1,10); % a column vector
dY(1) = (1/Cm)*(-gL*(Y(1)-EL)-gNa*MInfPR94(Y(1),WRT).*Y(4).*(Y(1)-ENa)-gKDR*Y(5).*(Y(1)-Ek)...
+(gc/p)*(Y(2)-Y(1)+VdsOut)+Isinj/p);
dY(2) = (1/Cm)*(-gL*(Y(2)-EL)-gCa*(Y(2)-ECa).*Y(6).^2-gKAHP*Y(8).*(Y(2)-Ek)-gKC*Y(7).*Chi(Y(3)).*(Y(2)-Ek)...
+ gc/(1-p)*(Y(1)-Y(2)-VdsOut)+Idinj/(1-p)-(INMDA+IAMPA)/(1-p));
dY(3) = -0.13*gCa*(Y(2)-ECa).*Y(6).^2-0.075*Y(3);
dY(4) = (GateEquil_db(alphah_db(Y(1),WRT),betah_db(Y(1),WRT))-Y(4))./GateTimeCnst_db(alphah_db(Y(1),WRT),betah_db(Y(1),WRT));
dY(5) = (GateEquil_db(alphan_db(Y(1),WRT),betan_db(Y(1),WRT))-Y(5))./GateTimeCnst_db(alphan_db(Y(1),WRT),betan_db(Y(1),WRT));
dY(6) = (GateEquil_db(alphas_db(Y(2),WRT),betas_db(Y(2),WRT))-Y(6))./GateTimeCnst_db(alphas_db(Y(2),WRT),betas_db(Y(2),WRT));
dY(7) = (GateEquil_db(alphac_db (Y(2),WRT),betac_db(Y(2),WRT))-Y(7))./GateTimeCnst_db(alphac_db(Y(2),WRT),betac_db(Y(2),WRT));
dY(8) = (GateEquil_db(alphaq_db(Y(3)),betaq_db)-Y(8))./GateTimeCnst_db(alphaq_db(Y(3)),betaq_db);
dY(9) = SynSumNMDA(VsPre) - Y(9)/150;
dY(10) = SynSumAMPA(VsPre) - Y(10)/2;
dY = reshape(dY,10,1);
end
function SumNMDA = SynSumNMDA(VsPre)
SumNMDA = 0;
if VsPre > 10
SumNMDA=SumNMDA+1;
end
end
function SumAMPA = SynSumAMPA(VsPre)
SumAMPA = 0;
if VsPre > 20
SumAMPA=SumAMPA+1;
end
end
function CaSatChi= Chi(Ca)
CaSatChi = min(Ca/250,1);
end
function MInfsqr = MInfPR94(Vs,WRT)
alp=alpham_db(Vs,WRT);
bet=betam_db(Vs,WRT);
MInfsqr = GateEquil_db(alp,bet).^2;
end
function [value,isterminal,direction] = events(t,y)
% Locate the time when potential passes through zero in a
% decreasing direction and stop integration.
value = y(1)-VsThresh; % Detect Soma = 10
if termaftevent==true
isterminal = 1; % Stop the integration
else
isterminal = 0; % Keep going
end
direction = 1; % positive direction only
end
end