function [probabilities, distsa, amps]=INcalcprobs3D(ZI, filename, iter)
% Called by INPlotSimpleComplete.m
% Constructs a 3D slab of artificial cortex containing a single cell type.
% An electrode is then passed through the slice, and the number and
% location of neurons recruited by stimulation at each location are
% tabulated. Additionally, videos of recruitment are generated.
cells=struct;
switch filename
% Defines the number of neurons found within a 1 mm by 1 mm slab of
% cortex for each cell type. The scale factor of 9 increases the slab
% to 3 mm by 3 mm.
case 'celltype1.dat'
numcells2=0;
numcells3=1327*9;
numcells4=308*9;
numcells5=930*9;
numcells6=547*9;
xcenter=500;
ycenter=225;
case 'celltype2.dat'
numcells2=496*9;
numcells3=1744*9;
numcells4=235*9;
numcells5=310*9;
numcells6=0;
xcenter=225;
ycenter=250;
case 'celltype3.dat'
numcells2=364*9;
numcells3=0;
numcells4=0;
numcells5=0;
numcells6=0;
xcenter=175;
ycenter=850;
case 'celltype4.dat'
numcells2=364*9;
numcells3=1857*9;
numcells4=525*9;
numcells5=103*9;
numcells6=0;
xcenter=200+25;
ycenter=400+25;
case 'celltype5.dat'
numcells2=430*9;
numcells3=114*9;
numcells4=924*9;
numcells5=103*9;
numcells6=0;
xcenter=275;
ycenter=275;
case 'celltype6.dat'
numcells2=662*9;
numcells3=38*9;
numcells4=0;
numcells5=0;
numcells6=0;
xcenter=675;
ycenter=250;
case 'celltype7.dat'
numcells2=0;
numcells3=38*9;
numcells4=942*9;
numcells5=0;
numcells6=0;
xcenter=175;
ycenter=225;
case 'celltype8.dat'
numcells2=0;
numcells3=0;
numcells4=0;
numcells5=0;
numcells6=3190*9;
xcenter=250;
ycenter=200;
end
% Randomly distributes correct number of cells within the depths
% corresponding to each cortical layer. Depths are measured relative to
% the bottom of Layer VI.
% Layer I: 1526 - 1735 um
% Layer II: 1401 - 1525 um
% Layer III: 931 - 1400 um
% Layer IV: 686 - 930 um
% Layer V: 466 - 685 um
% Layer VI: 0 - 465 um
depths=0:50:1735;
cellstotal=numcells2+numcells3+numcells4+numcells5+numcells6;
cellcount=1;
for i=1:1:numcells2
x=randi([1,3000]);
y=randi([1401,1525]);
z=randi([1,3000]);
cells.type1.location(cellcount,1)=x;
cells.type1.location(cellcount,2)=y;
cells.type1.location(cellcount,3)=z;
cellcount=cellcount+1;
end
for i=1:1:numcells3
x=randi([1,3000]);
y=randi([931,1400]);
z=randi([1,3000]);
cells.type1.location(cellcount,1)=x;
cells.type1.location(cellcount,2)=y;
cells.type1.location(cellcount,3)=z;
cellcount=cellcount+1;
end
for i=1:1:numcells4
x=randi([1,3000]);
y=randi([686,930]);
z=randi([1,3000]);
cells.type1.location(cellcount,1)=x;
cells.type1.location(cellcount,2)=y;
cells.type1.location(cellcount,3)=z;
cellcount=cellcount+1;
end
for i=1:1:numcells5
x=randi([1,3000]);
y=randi([466,685]);
z=randi([1,3000]);
cells.type1.location(cellcount,1)=x;
cells.type1.location(cellcount,2)=y;
cells.type1.location(cellcount,3)=z;
cellcount=cellcount+1;
end
for i=1:1:numcells6
x=randi([1,3000]);
y=randi([0,465]);
z=randi([1,3000]);
cells.type1.location(cellcount,1)=x;
cells.type1.location(cellcount,2)=y;
cells.type1.location(cellcount,3)=z;
cellcount=cellcount+1;
end
electrode=struct;
amprange=-0.005:-0.010:-.125;
j=1;
% Defines plane to move electrode within
x=1250:50:1750;
y=0:50:1735;
z=1500;
% Moves electrode throughout the plane and identifies neurons activated by
% stimulation at each location.
for x1=1:1:length(x)
for y1=1:1:length(y)
% Sets electrode location within slice
electrode.location(j,1)=x(x1);
electrode.location(j,2)=y(y1);
electrode.location(j,3)=z;
electrode.amplitude(1,:)=amprange;
%{
% Plots location of cell bodies.
figure
hold on
plot(cells.type1.location(:,1), cells.type1.location(:,2), 'r.')
axis square
axis([0 1000 0 1735])
%}
% Calculates location of electrode relative to cell body
relposition(:,1)=-cells.type1.location(:,1)+electrode.location(j,1);
relposition(:,2)=-cells.type1.location(:,2)+electrode.location(j,2);
relposition(:,3)=-cells.type1.location(:,3)+electrode.location(j,3);
relposition(:,4)=sqrt(relposition(:,1).^2+relposition(:,3).^2);
% Identify instances where electrode is to the left of the cell
% body and flips the relative position to take this into account.
indexes=relposition(:,1)<0 ;
relposition(indexes,4)=relposition(indexes,4)*-1;
% Maps relative position of the electrode onto the stimulation
% threshold map.
lookup(:,2)=round((relposition(:,4)+xcenter)/25)+1;
lookup(:,1)=round((relposition(:,2)+ycenter)/25)+1;
% Looks up the stimulation threshold at the relative position of
% the electrode to the cell bodies. If the cell is activated by
% stimulation at that location, stimthreshold is set to an
% appropriate value. Otherwise, stimthreshold is set to an
% amplitude greater than the simulation range. Complete rotational
% symmetry is assumed for these interneurons.
indexes1=lookup(:,1) <=0 | lookup(:,2) <=0 | lookup(:,1) >=size(ZI,1) | lookup(:,2) >=size(ZI,2);
stimthreshold(indexes1,1)=135;
indexes2=~indexes1;
indexes3=find(indexes2);
for i=1:1:length(find(indexes2))
stimthreshold(indexes3(i),1)=ZI(lookup(indexes3(i),1), lookup(indexes3(i),2));
end
relposition(:,8)=stimthreshold(:,1);
relposition(:,9)=sqrt(relposition(:,1).^2+relposition(:,2).^2+relposition(:,3).^2);
% Total distance from cell body to electrode
stimthreshold(:,2)=relposition(:,9);
% Horizontal distance from cell body to electrode
stimthreshold(:,3)=relposition(:,4);
% Vertical distance from cell body to electrode
stimthreshold(:,4)=relposition(:,2);
%Calculate the number of cells that are activated at each level of
%stimulation
cells.type1.fiveua(y1,x1)=length(find(stimthreshold(:,1)<=5));
cells.type1.fifteenua(y1,x1)=length(find(stimthreshold(:,1)<=15));
cells.type1.twentyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=25));
cells.type1.thirtyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=35));
cells.type1.fortyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=45));
cells.type1.fiftyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=55));
cells.type1.sixtyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=65));
cells.type1.seventyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=75));
cells.type1.eightyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=85));
cells.type1.ninetyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=95));
cells.type1.onehundredfiveua(y1,x1)=length(find(stimthreshold(:,1)<=105));
cells.type1.onehundredfifteenua(y1,x1)=length(find(stimthreshold(:,1)<=115));
cells.type1.onehundredtwentyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=125));
%Calculate the number of cells activated for each stimulation
%strength and electrode position
electrode.activations(j, 1)=cells.type1.fiveua(y1, x1);
electrode.activations(j, 2)=cells.type1.fifteenua(y1, x1);
electrode.activations(j, 3)=cells.type1.twentyfiveua(y1, x1);
electrode.activations(j, 4)=cells.type1.thirtyfiveua(y1, x1);
electrode.activations(j, 5)=cells.type1.fortyfiveua(y1, x1);
electrode.activations(j, 6)=cells.type1.fiftyfiveua(y1, x1);
electrode.activations(j, 7)=cells.type1.sixtyfiveua(y1, x1);
electrode.activations(j, 8)=cells.type1.seventyfiveua(y1, x1);
electrode.activations(j, 9)=cells.type1.eightyfiveua(y1, x1);
electrode.activations(j, 10)=cells.type1.ninetyfiveua(y1, x1);
electrode.activations(j, 11)=cells.type1.onehundredfiveua(y1, x1);
electrode.activations(j, 12)=cells.type1.onehundredfifteenua(y1, x1);
electrode.activations(j, 13)=cells.type1.onehundredtwentyfiveua(y1, x1);
% Generates videos that show the location of neurons recruited by
% stimulation
if iter<=14
distsa=stimthreshold;
amps=struct;
end
if x1==6 && y1==33 && iter==15
[amps, distsa]=plotcellsliceactivation(1, stimthreshold, cells, electrode, j, filename, amps, distsa);
elseif x1==6 && y1==30 && iter==15
[amps, distsa]=plotcellsliceactivation(2, stimthreshold, cells, electrode, j, filename, amps, distsa);
elseif x1==6 && y1==24 && iter==15
[amps, distsa]=plotcellsliceactivation(3, stimthreshold, cells, electrode, j, filename, amps, distsa);
elseif x1==6 && y1==17 && iter==15
[amps, distsa]=plotcellsliceactivation(4, stimthreshold, cells, electrode, j, filename, amps, distsa);
elseif x1==6 && y1==12 && iter==15
[amps, distsa]=plotcellsliceactivation(5, stimthreshold, cells, electrode, j, filename, amps, distsa);
elseif x1==6 && y1==5 && iter==15
distsa=stimthreshold;
amps=struct;
[amps, distsa]=plotcellsliceactivation(6, stimthreshold, cells, electrode, j, filename, amps, distsa);
end
j=j+1;
end
end
names=fieldnames(cells.type1);
probabilities=struct;
% In a spatial map, calculate how many cells will fire at each electrode
% location and stimulation strength.
for n=2:1:size(names,1)
imageamp=cells.type1.(char(names(n)));
Z = imageamp;
for k=1:1:35
for j=0:1:cellstotal
% Calculate the probability of firing
% p(d, x)= numcellfires(x)/numlocations(d)
probabilities.bylayer.(char(names(n)))(k,j+1)=length(find(cells.type1.(char(names(n)))(k,:)==j))/21;
end
end
depths2=depths';
for layer=1:1:6
% Averages recruitment of all depths within a single cortical layer
if layer==1
index=find(depths2>=1550);
probabilities.layer1.(char(names(n)))=Z(index,:);
elseif layer==2
index=find(depths2>=1400 & depths2<=1500);
probabilities.layer2.(char(names(n)))=Z(index,:);
elseif layer==3
index=find(depths2>=950 & depths2<=1350);
probabilities.layer3.(char(names(n)))=Z(index,:);
elseif layer==4
index=find(depths2>=700 & depths2<=900);
probabilities.layer4.(char(names(n)))=Z(index,:);
elseif layer==5
index=find(depths2>=500 & depths2<=650);
probabilities.layer5.(char(names(n)))=Z(index,:);
else
index=find(depths2>=0 & depths2<=450);
probabilities.layer6.(char(names(n)))=Z(index,:);
end
end
end
% Calculate average number of cells activated at each stimulation
% strength
for m=1:1:35
indtoave=find(electrode.location(:,2)==(m-1)*50);
for x=1:1:13
electrode.actbydepth(m, x)=mean(electrode.activations(indtoave, x));
end
end
% Calculate average number of cells activated at each depth
for n=2:1:size(names,1)
for d=1:1:35
probabilities.avenum(d, n-1)=mean(cells.type1.(char(names(n)))(d, :));
end
end
probabilities.average=electrode.actbydepth;
% Returns to INPlotSimpleComplete.m