TITLE Motor Axon Node channels
: 2/02
: Cameron C. McIntyre
:
: Fast Na+, Persistant Na+, Slow K+, and Leakage currents
: responsible for nodal action potential
: Iterative equations H-H notation rest = -80 mV
:
: This model is described in detail in:
:
: McIntyre CC, Richardson AG, and Grill WM. Modeling the excitability of
: mammalian nerve fibers: influence of afterpotentials on the recovery
: cycle. Journal of Neurophysiology 87:995-1006, 2002.
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX axnode
NONSPECIFIC_CURRENT ina
NONSPECIFIC_CURRENT inap
NONSPECIFIC_CURRENT iks
NONSPECIFIC_CURRENT ikf
NONSPECIFIC_CURRENT il
RANGE gnafbar, gnapbar, gksbar, gkfbar, gl, ena, ek, el
RANGE m_inf, h_inf, p_inf, s_inf, n_inf
RANGE tau_m, tau_h, tau_p, tau_s, tau_n
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
gnabar = 3.0 (mho/cm2) :3.0
gnapbar = 0.01 (mho/cm2)
gksbar = 0.08 (mho/cm2) :0.08
gkfbar = 0.02 :0.02-0.04
gl = 0.007 (mho/cm2)
ena= 50.0 (mV) :50
ek = -90.0 (mV)
el = -90.0 (mV)
celsius (degC)
dt (ms)
v (mV)
}
STATE {
m h p s n
}
ASSIGNED {
ina (mA/cm2)
inap (mA/cm2)
iks (mA/cm2)
ikf (mA/cm2)
il (mA/cm2)
m_inf
h_inf
p_inf
s_inf
n_inf
tau_m
tau_h
tau_p
tau_s
tau_n
}
BREAKPOINT {
SOLVE states METHOD cnexp
ina = gnabar * m*m*m*h * (v - ena)
inap = gnapbar * p*p*p * (v - ena)
iks = gksbar * s* (v - ek)
ikf = gkfbar*n*n*n*n*(v-ek)
il = gl * (v - el)
}
DERIVATIVE states { : exact Hodgkin-Huxley equations
evaluate_fct(v)
m'= (m_inf - m) / tau_m
h' = (h_inf - h) / tau_h
p' = (p_inf - p) / tau_p
s' = (s_inf - s) / tau_s
n' = (n_inf - n) / tau_n
}
UNITSOFF
INITIAL {
:
: Q10 adjustment
:
evaluate_fct(v)
m = m_inf
h = h_inf
p = p_inf
s = s_inf
n = n_inf
}
PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2
a = vtrap1(v)
b = vtrap2(v)
tau_m = 1 / (a + b)
m_inf = a / (a + b)
a = vtrap3(v)
b = vtrap4(v)
tau_h = 1 / (a + b)
h_inf = a / (a + b)
a = vtrap5(v)
b = vtrap6(v)
tau_p = 1 / (a + b)
p_inf = a / (a + b)
a = vtrap7(v)
b = vtrap8(v)
tau_s = 1 / (a + b)
s_inf = a / (a + b)
a = vtrap9(v)
b = vtrap10(v)
tau_n = 1 / (a + b)
n_inf = a / (a + b)
}
FUNCTION vtrap1(x) {
if (fabs(-(x+20.4)/10.3) < 1e-6) {
vtrap1 = 6.57*10.3
}else{
vtrap1 = (6.57*(x+20.4))/(1-Exp(-(x+20.4)/10.3))
}
}
FUNCTION vtrap2(x) {
if (fabs((x+25.7)/9.16) < 1e-6) {
vtrap2 = 0.304*9.16
}else{
vtrap2 = (0.304*(-(x+25.7)))/(1-Exp((x+25.7)/9.16))
}
}
FUNCTION vtrap3(x) {
if (fabs((x+114)/11) < 1e-6) {
vtrap3 = 0.34*11
}else{
vtrap3 = (0.34*(-(x+114)))/(1-Exp((x+114)/11))
}
}
FUNCTION vtrap4(x) {
vtrap4 = 12.6/(1+Exp(-(x+31.8)/13.4))
}
FUNCTION vtrap5(x) {
if (fabs(-(x+27)/10.2) < 1e-6) {
vtrap5 = 0.0353*10.2
}else{
vtrap5 = (0.0353*(x+27)) / (1 - Exp(-(x+27)/10.2))
}
}
FUNCTION vtrap6(x) {
if (fabs((x+34)/10) < 1e-6) {
vtrap6 = 0.000883*10 : Ted Carnevale minus sign bug fix
}else{
vtrap6 = (0.000883*(-(x+34))) / (1 - Exp((x+34)/10))
}
}
FUNCTION vtrap7(x) {
vtrap7 = 0.3 / (1 + Exp((x+53)/-5))
}
FUNCTION vtrap8(x) {
vtrap8 = 0.03 / (1 + Exp((x+90)/-1))
}
FUNCTION vtrap9(x) {
if (fabs(-(x+83.2)/1.1) < 1e-6) {
vtrap9 = 0.0462*1.1 : Ted Carnevale minus sign bug fix
}else{
vtrap9 = (0.0462*(x+83.2))/(1-Exp(-(x+83.2)/1.1))
}
}
FUNCTION vtrap10(x) {
if (fabs((x+66)/10.5) < 1e-6) {
vtrap10 = 0.0824*10.5
}else{
vtrap10 = (0.0824*(-(x+66)))/(1-Exp((x+66)/10.5))
}
}
FUNCTION Exp(x) {
if (x < -100) {
Exp = 0
}else{
Exp = exp(x)
}
}
UNITSON