function [probabilities, distsa, amps]=PyrSymcalcprobs3D(imgData, imgDataSym, filename, filenameSym, iter)
% Called by PyrPlotSimpleComplete.m
% Constructs a 3D slab of artificial cortex containing a single cell type.
% An electrode is then passed through the slice, and the number and
% location of neurons recruited by stimulation at each location are
% tabulated. Additionally, videos of recruitment are generated.
% This version takes neuron asymmetry into account and should be used for
% all cell types except 11 and 15.
cells=struct;
switch filename
% Defines the number of neurons found within a 1 mm by 1 mm slab of
% cortex for each cell type. The scale factor of 9 increases the slab
% to 3 mm by 3 mm.
case 'filemat9.dat'
numcells2=6500*9;
numcells3=0;
numcells4=0;
numcells5=0;
numcells6=0;
xcenter=275+25;
ycenter=1650+25;
xcenterSym=250+25;
ycenterSym=1650+25;
case 'filemat10.dat'
% This cell type is not distributed throughout all of layer III
numcells2=0;
numcells3=3000*9;
numcells4=0;
numcells5=0;
numcells6=0;
xcenter=775+25;
ycenter=1700+25;
xcenterSym=650+25;
ycenterSym=1750+25;
case 'filemat12.dat'
numcells2=0;
numcells3=0;
numcells4=6250*9;
numcells5=0;
numcells6=0;
xcenter=625+25;
ycenter=475+25;
xcenterSym=625+25;
ycenterSym=300+25;
case 'filemat13.dat'
numcells2=0;
numcells3=0;
numcells4=6250*9;
numcells5=0;
numcells6=0;
xcenter=200+25;
ycenter=325+25;
xcenterSym=200+25;
ycenterSym=275+25;
case 'filemat14.dat'
numcells2=0;
numcells3=0;
numcells4=0;
numcells5=7000*9;
numcells6=0;
xcenter=1250+25;
ycenter=700+25;
xcenterSym=275+25;
ycenterSym=1050+25;
end
% Randomly distributes correct number of cells within the depths
% corresponding to each cortical layer. Depths are measured relative to
% the bottom of Layer VI.
% Layer I: 1526 - 1735 um
% Layer II: 1401 - 1525 um
% Layer III: 931 - 1400 um
% Layer IV: 686 - 930 um
% Layer V: 466 - 685 um
% Layer VI: 0 - 465 um
depths=0:50:1735;
cellstotal=numcells2+numcells3+numcells4+numcells5+numcells6;
cellcount=1;
for i=1:1:numcells2
x=randi([1,3000]);
y=randi([1401,1525]);
z=randi([1,3000]);
cells.type1.location(cellcount,1)=x;
cells.type1.location(cellcount,2)=y;
cells.type1.location(cellcount,3)=z;
cellcount=cellcount+1;
end
if(strcmp(filename, 'filemat10.dat'))
for i=1:1:numcells3
x=randi([1,3000]);
y=randi([1035,1400]);
z=randi([1,3000]);
cells.type1.location(cellcount,1)=x;
cells.type1.location(cellcount,2)=y;
cells.type1.location(cellcount,3)=z;
cellcount=cellcount+1;
end
else
for i=1:1:numcells3
x=randi([1,3000]);
y=randi([931,1400]);
z=randi([1,3000]);
cells.type1.location(cellcount,1)=x;
cells.type1.location(cellcount,2)=y;
cells.type1.location(cellcount,3)=z;
cellcount=cellcount+1;
end
end
for i=1:1:numcells4
x=randi([1,3000]);
y=randi([686,930]);
z=randi([1,3000]);
cells.type1.location(cellcount,1)=x;
cells.type1.location(cellcount,2)=y;
cells.type1.location(cellcount,3)=z;
cellcount=cellcount+1;
end
for i=1:1:numcells5
x=randi([1,3000]);
y=randi([466,685]);
z=randi([1,3000]);
cells.type1.location(cellcount,1)=x;
cells.type1.location(cellcount,2)=y;
cells.type1.location(cellcount,3)=z;
cellcount=cellcount+1;
end
for i=1:1:numcells6
x=randi([1,3000]);
y=randi([0,465]);
z=randi([1,3000]);
cells.type1.location(cellcount,1)=x;
cells.type1.location(cellcount,2)=y;
cells.type1.location(cellcount,3)=z;
cellcount=cellcount+1;
end
electrode=struct;
amprange=-0.005:-0.010:-.125;
j=1;
% Defines plane to move electrode within
if strcmp(filename,'filemat9.dat')==1
% This plane is shifted to reduce edge effects since this cell type has
% long horizontal axonal branches.
x=2000:50:2500;
else
x=1250:50:1750;
end
y=0:50:1735;
z=1500;
for x1=1:1:length(x)
for y1=1:1:length(y)
% Sets electrode location within slice
electrode.location(j,1)=x(x1);
electrode.location(j,2)=y(y1);
electrode.location(j,3)=z;
electrode.amplitude(1,:)=amprange;
% Calculates location of electrode relative to cell body
relposition(:,1)=-cells.type1.location(:,1)+electrode.location(j,1);
relposition(:,2)=-cells.type1.location(:,2)+electrode.location(j,2);
relposition(:,3)=-cells.type1.location(:,3)+electrode.location(j,3);
relposition(:,4)=sqrt(relposition(:,1).^2+relposition(:,3).^2);
% Identify instances where electrode is to the left of the cell
% body and flips the relative position to take this into account.
indexes=relposition(:,1)<0 ;
relposition(indexes,4)=relposition(indexes,4)*-1;
% Identifies the angle between the electrode and cell body
ratioXY = relposition(:,3)./relposition(:,1);
relposition(:,7) = abs(atand(ratioXY));
% Uses the Symmetrical threshold map if the angle between electrode
% and cell body is greater than +/- 5 degrees. Otherwise the
% standard (nonsymmetric) threshold map is used.
nonSymIndex = find(relposition(:,7) <= 5);
symIndex = find(relposition(:,7) > 5);
% Maps relative position of the electrode onto the appropriate
% stimulation threshold map.
relpositionSym(:,6)=(round((relposition(:,4)+xcenterSym)/25))+1;
relpositionSym(:,5)=(round((relposition(:,2)+ycenterSym)/25))+1;
lookupSym(:,1)=relpositionSym(:,5);
lookupSym(:,2)=relpositionSym(:,6);
relpositionNonSym(:,6)=(round((relposition(:,4)+xcenter)/25))+1;
relpositionNonSym(:,5)=(round((relposition(:,2)+ycenter)/25))+1;
lookupNonSym(:,1)=relpositionNonSym(:,5);
lookupNonSym(:,2)=relpositionNonSym(:,6);
stimthreshold(max(max(symIndex),max(nonSymIndex)),1)=0;
stimthreshold(:,1)=135;
% Looks up the stimulation threshold at the relative position of
% the electrode to the cell bodies. If the cell is activated by
% stimulation at that location, stimthreshold is set to an
% appropriate value. Otherwise, stimthreshold is set to an
% amplitude greater than the simulation range.
NonSym=find(lookupNonSym(:,1) >0 & lookupNonSym(:,2) >0 & lookupNonSym(:,1) < size(imgData,1) & lookupNonSym(:,2) < size(imgData,2) & relposition(:,7)<=5);
Sym=find(lookupSym(:,1) >0 & lookupSym(:,2) >0 & lookupSym(:,1) < size(imgDataSym,1) & lookupSym(:,2) < size(imgDataSym,2) & relposition(:,7)>5);
for i=1:1:length(NonSym)
stimthreshold(NonSym(i),1)=imgData(lookupNonSym(NonSym(i),1), lookupNonSym(NonSym(i),2));
end
for i=1:1:length(Sym)
stimthreshold(Sym(i),1)=imgDataSym(lookupSym(Sym(i),1), lookupSym(Sym(i),2));
end
relposition(:,8)=stimthreshold(:,1);
relposition(:,9)=sqrt(relposition(:,1).^2+relposition(:,2).^2+relposition(:,3).^2);
% Total distance from cell body to electrode
stimthreshold(:,2)=relposition(:,9);
% Horizontal distance from cell body to electrode
stimthreshold(:,3)=relposition(:,4);
% Vertical distance from cell body to electrode
stimthreshold(:,4)=relposition(:,2);
%Calculate the number of cells that are activated at each level of
%stimulation
cells.type1.fiveua(y1,x1)=length(find(stimthreshold(:,1)<=5));
cells.type1.fifteenua(y1,x1)=length(find(stimthreshold(:,1)<=15));
cells.type1.twentyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=25));
cells.type1.thirtyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=35));
cells.type1.fortyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=45));
cells.type1.fiftyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=55));
cells.type1.sixtyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=65));
cells.type1.seventyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=75));
cells.type1.eightyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=85));
cells.type1.ninetyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=95));
cells.type1.onehundredfiveua(y1,x1)=length(find(stimthreshold(:,1)<=105));
cells.type1.onehundredfifteenua(y1,x1)=length(find(stimthreshold(:,1)<=115));
cells.type1.onehundredtwentyfiveua(y1,x1)=length(find(stimthreshold(:,1)<=125));
%Calculate the number of cells activated for each stimulation
%strength and electrode position
electrode.activations(j, 1)=cells.type1.fiveua(y1, x1);
electrode.activations(j, 2)=cells.type1.fifteenua(y1, x1);
electrode.activations(j, 3)=cells.type1.twentyfiveua(y1, x1);
electrode.activations(j, 4)=cells.type1.thirtyfiveua(y1, x1);
electrode.activations(j, 5)=cells.type1.fortyfiveua(y1, x1);
electrode.activations(j, 6)=cells.type1.fiftyfiveua(y1, x1);
electrode.activations(j, 7)=cells.type1.sixtyfiveua(y1, x1);
electrode.activations(j, 8)=cells.type1.seventyfiveua(y1, x1);
electrode.activations(j, 9)=cells.type1.eightyfiveua(y1, x1);
electrode.activations(j, 10)=cells.type1.ninetyfiveua(y1, x1);
electrode.activations(j, 11)=cells.type1.onehundredfiveua(y1, x1);
electrode.activations(j, 12)=cells.type1.onehundredfifteenua(y1, x1);
electrode.activations(j, 13)=cells.type1.onehundredtwentyfiveua(y1, x1);
% Generates videos that show the location of neurons recruited by
% stimulation.
if iter<=14
distsa=stimthreshold;
amps=struct;
end
if x1==6 && y1==33 && iter==15
[amps, distsa]=plotcellsliceactivation(1, stimthreshold, cells, electrode, j, filename, amps, distsa);
elseif x1==6 && y1==30 && iter==15
[amps, distsa]=plotcellsliceactivation(2, stimthreshold, cells, electrode, j, filename, amps, distsa);
elseif x1==6 && y1==24 && iter==15
[amps, distsa]=plotcellsliceactivation(3, stimthreshold, cells, electrode, j, filename, amps, distsa);
elseif x1==6 && y1==17 && iter==15
[amps, distsa]=plotcellsliceactivation(4, stimthreshold, cells, electrode, j, filename, amps, distsa);
elseif x1==6 && y1==12 && iter==15
[amps, distsa]=plotcellsliceactivation(5, stimthreshold, cells, electrode, j, filename, amps, distsa);
elseif x1==6 && y1==5 && iter==15
distsa=stimthreshold;
amps=struct;
[amps, distsa]=plotcellsliceactivation(6, stimthreshold, cells, electrode, j, filename, amps, distsa);
end
j=j+1;
end
end
names=fieldnames(cells.type1);
probabilities=struct;
% In a spatial map, calculate how many cells will fire at each stimulation
% strength and electrode location
for n=2:1:size(names,1)
imageamp=cells.type1.(char(names(n)));
Z = imageamp;
% Generate recruitment methods figure
%{
if n==3
figure
hold on
image(Z+1)
axis image
hold on
colormap(gray(256))
set(gca, 'XTick', [])
set(gca, 'YDir', 'normal')
set(gca, 'YTick', round((135:200:1535)/50))
set(gca, 'YTickLabel', {'1600', '1400', '1200', '1000', '800', '600', '400', '200'})
ylabel('Distance from surface of cortex (um)')
h=colorbar('location', 'SouthOutside');
set(h, 'XTick', [57, 112, 168, 224])
labels = char('100', '200', '300', '400');
set(h, 'xticklabel', labels)
set(get(h,'xlabel'),'String', 'Number of Cells Activated');
title('Slice Stimulation (25 \muA)')
line([0 22], [30.5 30.5], [0 0], 'LineWidth', 2, 'Color', 'w')
line([0 22], [28 28],[0 0], 'LineWidth', 2, 'Color', 'w')
line([0 22], [18.5 18.5], [0 0],'LineWidth', 2, 'Color', 'w')
line([0 22], [13.5 13.5],[0 0], 'LineWidth', 2, 'Color', 'w')
line([0 3500], [9.5 9.5], [0 0],'LineWidth', 2, 'Color', 'w')
1;
end
%}
depths2=depths';
for layer=1:1:6
% Averages recruitment of all depths within a single cortical layer
if layer==1
index=find(depths2>=1550);
probabilities.layer1.(char(names(n)))=Z(index,:);
elseif layer==2
index=find(depths2>=1400 & depths2<=1500);
probabilities.layer2.(char(names(n)))=Z(index,:);
elseif layer==3
index=find(depths2>=950 & depths2<=1350);
probabilities.layer3.(char(names(n)))=Z(index,:);
elseif layer==4
index=find(depths2>=700 & depths2<=900);
probabilities.layer4.(char(names(n)))=Z(index,:);
elseif layer==5
index=find(depths2>=500 & depths2<=650);
probabilities.layer5.(char(names(n)))=Z(index,:);
else
index=find(depths2>=0 & depths2<=450);
probabilities.layer6.(char(names(n)))=Z(index,:);
end
end
end
% Calculate average number of cells activated at each stimulation
% strength
for m=1:1:35
indtoave=find(electrode.location(:,2)==(m-1)*50);
for x=1:1:13
electrode.actbydepth(m, x)=mean(electrode.activations(indtoave, x));
end
end
% Calculate average number of cells activated at each depth
for n=2:1:size(names,1)
for d=1:1:35
probabilities.avenum(d, n-1)=mean(cells.type1.(char(names(n)))(d, :));
end
end
probabilities.average=electrode.actbydepth;
% Returns to PyrPlotSimpleComplete.m