// striatum model solved using mid-point method (aka 2nd order Runge-Kutta) // this version a Win32-compatible re-write (17/5/2010) of code from March 2009 // Version B has no scaling of PSC onset by synaptic time constant #include <mex.h> #include <matrix.h> #include <stdio.h> #include <math.h> #include <stdlib.h> #include <time.h> // MEX-specific macros for isnan etc as Microsoft VS etc do not support them // from: http://www.mathworks.com/matlabcentral/newsreader/view_thread/130557 #if __STDC_VERSION_ <= 199901L # define isinf(a) ((a) == mxGetInf() || (a) == -mxGetInf()) # define isnan(a) ((a) != (a)) # define isfinite(a) !((a) != (a) || (a) == mxGetInf() || (a) == -mxGetInf()) #endif // =============================================================== // RANDOM NUMBER GENERATOR #define SHR3 (jz=jsr, jsr^=(jsr<<13), jsr^=(jsr>>17), jsr^=(jsr<<5),jz+jsr) #define UNI (.5 + (signed) SHR3 * .2328306e-9) #define RNOR (hz=SHR3, iz=hz&127, (abs(hz)<kn[iz])? hz*wn[iz] : nfix()) #define REXP (jz=SHR3, iz=jz&255, ( jz <ke[iz])? jz*we[iz] : efix()) static unsigned int iz,jz,jsr=123456789,kn[128],ke[256]; static int hz; static float wn[128],fn[128], we[256],fe[256]; float nfix(void) { /*provides RNOR if #define cannot */ const float r = 3.442620f; static float x, y; for(;;){ x=hz*wn[iz]; if(iz==0){ do{x=-log(UNI)*0.2904764; y=-log(UNI);} while(y+y<x*x); return (hz>0)? r+x : -r-x; } if( fn[iz]+UNI*(fn[iz-1]-fn[iz]) < exp(-.5*x*x) ) return x; hz=SHR3; iz=hz&127;if(abs(hz)<kn[iz]) return (hz*wn[iz]); } } float efix(void) { /*provides REXP if #define cannot */ float x; for(;;){ if(iz==0) return (7.69711-log(UNI)); x=jz*we[iz]; if( fe[iz]+UNI*(fe[iz-1]-fe[iz]) < exp(-x) ) return (x); jz=SHR3; iz=(jz&255); if(jz<ke[iz]) return (jz*we[iz]); } } // == This procedure sets the seed and creates the tables == void zigset(unsigned int jsrseed) { const double m1 = 2147483648.0, m2 = 4294967296.; double dn=3.442619855899,tn=dn,vn=9.91256303526217e-3, q; double de=7.697117470131487, te=de, ve=3.949659822581572e-3; int i; jsr=jsrseed; /* Tables for RNOR: */ q=vn/exp(-.5*dn*dn); kn[0]=(dn/q)*m1; kn[1]=0; wn[0]=q/m1; wn[127]=dn/m1; fn[0]=1.; fn[127]=exp(-.5*dn*dn); for(i=126;i>=1;i--) { dn=sqrt(-2.*log(vn/dn+exp(-.5*dn*dn))); kn[i+1]=(dn/tn)*m1; tn=dn; fn[i]=exp(-.5*dn*dn); wn[i]=dn/m1; } /* Tables for REXP */ q = ve/exp(-de); ke[0]=(de/q)*m2; ke[1]=0; we[0]=q/m2; we[255]=de/m2; fe[0]=1.; fe[255]=exp(-de); for(i=254;i>=1;i--) { de=-log(ve/de+exp(-de)); ke[i+1]= (de/te)*m2; te=de; fe[i]=exp(-de); we[i]=de/m2; } } int mxGetScalarInt32(const mxArray* a, int defaultValue = -2147483648) { if (mxIsEmpty(a)) { if (defaultValue == -2147483648) throw "missing input"; return defaultValue; } if (!mxIsInt32(a)) throw "not int32"; if (mxGetNumberOfDimensions(a) != 2) throw "expected scalar"; if (mxGetM(a) != 1 || mxGetN(a) != 1) throw "expected scalar"; return mxGetScalar(a); //if (fabs(val) > pow(2,30)) throw "value out of range"; //if (floor(val) != val) throw "value not an integer"; //return val; } double mxGetScalarDouble(const mxArray* a, double defaultValue = -2147483648.1) { if (mxIsEmpty(a)) { if (defaultValue == -2147483648.1) throw "missing input"; return defaultValue; } if (!mxIsDouble(a)) throw "not Double"; if (mxGetNumberOfDimensions(a) != 2) throw "expected scalar"; if (mxGetM(a) != 1 || mxGetN(a) != 1) throw "expected scalar"; return mxGetScalar(a); } struct MatrixInt32 { int* data; int M, N; }; MatrixInt32 mxGetMatrixInt32(const mxArray* a, int M = -1, int N = -1) { MatrixInt32 ret; if (!mxIsInt32(a)) throw "not int32"; if (mxGetNumberOfDimensions(a) != 2) throw "expected 2D matrix"; if (mxIsComplex(a)) throw "expected real matrix"; if (mxIsEmpty(a)) ret.data = NULL; else ret.data = (int*)mxGetData(a); ret.M = mxGetM(a); ret.N = mxGetN(a); if (M != -1 && M != ret.M) throw "interger matrix has wrong dimension (M)"; if (N != -1 && N != ret.N) throw "interger matrix has wrong dimension (N)"; return ret; } struct MatrixDouble { double* data; int M, N; }; MatrixDouble mxGetMatrixDouble(const mxArray* a, int M = -1, int N = -1) { MatrixDouble ret; if (!mxIsDouble(a)) throw "not double"; if (mxGetNumberOfDimensions(a) != 2) throw "expected 2D matrix"; if (mxIsComplex(a)) throw "expected real matrix"; if (mxIsEmpty(a)) ret.data = NULL; else ret.data = (double*)mxGetData(a); ret.M = mxGetM(a); ret.N = mxGetN(a); if (M != -1 && M != ret.M) throw "double matrix has wrong dimension (M)"; if (N != -1 && N != ret.N) throw "double matrix has wrong dimension (N)"; return ret; } // =============================================================== // Main simulation function void execute(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { // =============================================================== // The Inputs // --------------------------------------------------------------- if (nrhs != 72) throw "not enough inputs"; // --------------------------------------------------------------- // Get the inputs double tstart = mxGetScalarDouble(prhs[0]); double tfinal = mxGetScalarDouble(prhs[1]); double dt = mxGetScalarDouble(prhs[2]); // double dt_fs = mxGetScalarDouble(prhs[3]); int tend = (int)(tfinal / dt); MatrixDouble MSparams = mxGetMatrixDouble(prhs[3]); MatrixDouble FSparams = mxGetMatrixDouble(prhs[4]); double Eglu = mxGetScalarDouble(prhs[5]); double Egaba = mxGetScalarDouble(prhs[6]); double ts_glu_AMPA = mxGetScalarDouble(prhs[7]); double ts_glu_NMDA = mxGetScalarDouble(prhs[8]); double ts_gaba = mxGetScalarDouble(prhs[9]); double tau_fsgap = mxGetScalarDouble(prhs[10]); int MSspikebuffer = mxGetScalarInt32(prhs[11]); int FSspikebuffer = mxGetScalarInt32(prhs[12]); MatrixDouble initVms = mxGetMatrixDouble(prhs[13]); MatrixDouble initUms = mxGetMatrixDouble(prhs[14], initVms.M, initVms.N); MatrixDouble initVfs = mxGetMatrixDouble(prhs[15]); MatrixDouble initUfs = mxGetMatrixDouble(prhs[16], initVfs.M, initVfs.N); MatrixDouble initVfsgap = mxGetMatrixDouble(prhs[17]); // get the dimensions of the MS and FS networks const int *dims_ms = mxGetDimensions(prhs[13]); int ndim_ms = mxGetNumberOfDimensions(prhs[13]); int N_MS = initVms.M; const int *dims_fs = mxGetDimensions(prhs[15]); int ndim_fs = mxGetNumberOfDimensions(prhs[15]); int N_FS = initVfs.M; const int *dims_fsgap = mxGetDimensions(prhs[17]); int ndim_fsgap = mxGetNumberOfDimensions(prhs[17]); int N_fsgap = initVfsgap.M*initVfsgap.N; MatrixDouble initSEQ_MSglu = mxGetMatrixDouble(prhs[18], N_MS); MatrixDouble initSEQ_FSglu = mxGetMatrixDouble(prhs[19], N_FS); MatrixDouble initSEQ_MSGABA = mxGetMatrixDouble(prhs[20], N_MS); MatrixDouble initSEQ_FSGABA = mxGetMatrixDouble(prhs[21], N_FS); MatrixDouble initCTX = mxGetMatrixDouble(prhs[22]); // *** NEED TO REMOVE THIS AND FIND ANOTHER WAY TO SET UP MATRICES FURTHER DOWN *** const int *initSEQ_MSGABA_dims = mxGetDimensions(prhs[20]); int initSEQ_MSGABA_ndim = mxGetNumberOfDimensions(prhs[20]); const int *initSEQ_FSGABA_dims = mxGetDimensions(prhs[21]); int initSEQ_FSGABA_ndim = mxGetNumberOfDimensions(prhs[21]); // *** Not used currently, but will need bounds check put on dimensions *** MatrixDouble Ims = mxGetMatrixDouble(prhs[23]); MatrixDouble Ifs = mxGetMatrixDouble(prhs[24]); MatrixInt32 Cctms = mxGetMatrixInt32(prhs[25], N_MS, 1); // need to set bound on to N_MS, no + 1 MatrixInt32 Cctms_b = mxGetMatrixInt32(prhs[26], N_MS+1, 1); MatrixInt32 Cctms_d = mxGetMatrixInt32(prhs[27], N_MS, 1); MatrixDouble Cctms_w = mxGetMatrixDouble(prhs[28], N_MS, 1); // double a_ms = mxGetScalarDouble(prhs[29]); MatrixInt32 Cmsms = mxGetMatrixInt32(prhs[29]); MatrixInt32 Cmsms_b = mxGetMatrixInt32(prhs[30], N_MS+1, 1); MatrixInt32 Cmsms_d = mxGetMatrixInt32(prhs[31], Cmsms.M, Cmsms.N); MatrixDouble Cmsms_w = mxGetMatrixDouble(prhs[32], Cmsms.M, Cmsms.N); MatrixInt32 Cfsms = mxGetMatrixInt32(prhs[33]); MatrixInt32 Cfsms_b = mxGetMatrixInt32(prhs[34], N_FS+1, 1); MatrixInt32 Cfsms_d = mxGetMatrixInt32(prhs[35], Cfsms.M, Cfsms.N); MatrixDouble Cfsms_w = mxGetMatrixDouble(prhs[36], Cfsms.M, Cfsms.N); const int *dims_Cfsms_b = mxGetDimensions(prhs[34]); MatrixInt32 Cctfs = mxGetMatrixInt32(prhs[37], N_FS, 1); MatrixInt32 Cctfs_b = mxGetMatrixInt32(prhs[38], N_FS+1, 1); MatrixInt32 Cctfs_d = mxGetMatrixInt32(prhs[39], N_FS, 1); MatrixDouble Cctfs_w = mxGetMatrixDouble(prhs[40], N_FS, 1); const int *dims_Cctfs_b = mxGetDimensions(prhs[38]); // double a_fs = mxGetScalarDouble(prhs[42]); MatrixInt32 Cfsfs = mxGetMatrixInt32(prhs[41]); MatrixInt32 Cfsfs_b = mxGetMatrixInt32(prhs[42], N_FS+1, 1); MatrixInt32 Cfsfs_d = mxGetMatrixInt32(prhs[43], Cfsfs.M, Cfsfs.N); MatrixDouble Cfsfs_w = mxGetMatrixDouble(prhs[44], Cfsfs.M, Cfsfs.N); const int *dims_Cfsfs_b = mxGetDimensions(prhs[42]); MatrixInt32 Cgapfs = mxGetMatrixInt32(prhs[45]); MatrixInt32 Cgapfs_b = mxGetMatrixInt32(prhs[46], N_FS+1, 1); MatrixDouble Cgapfs_w = mxGetMatrixDouble(prhs[47], Cgapfs.M, Cgapfs.N); MatrixInt32 Pgapfs = mxGetMatrixInt32(prhs[48]); MatrixDouble CTX_state = mxGetMatrixDouble(prhs[49]); MatrixInt32 CHAN1_MS = mxGetMatrixInt32(prhs[50]); MatrixInt32 CHAN1_FS = mxGetMatrixInt32(prhs[51]); MatrixInt32 CHAN2_MS = mxGetMatrixInt32(prhs[52]); MatrixInt32 CHAN2_FS = mxGetMatrixInt32(prhs[53]); const int *dims_CHAN1_MS = mxGetDimensions(prhs[50]); int N_CHAN1_MS = dims_CHAN1_MS[0]; const int *dims_CHAN1_FS = mxGetDimensions(prhs[51]); int N_CHAN1_FS = dims_CHAN1_FS[0]; MatrixInt32 N_MSSEG = mxGetMatrixInt32(prhs[54], N_MS, 1); MatrixDouble r_MSSEG = mxGetMatrixDouble(prhs[55], N_MS, 1); MatrixDouble alpha_MSSEG = mxGetMatrixDouble(prhs[56], N_MS, 1); MatrixInt32 N_FSSEG = mxGetMatrixInt32(prhs[57], N_FS, 1); MatrixDouble r_FSSEG = mxGetMatrixDouble(prhs[58], N_FS, 1); MatrixDouble alpha_FSSEG = mxGetMatrixDouble(prhs[59], N_FS, 1); double glu_ratio = mxGetScalarDouble(prhs[60]); double DA = mxGetScalarDouble(prhs[61]); MatrixInt32 RecordChan_MS = mxGetMatrixInt32(prhs[62]); const int dims_RecordChan_MS_out [2] = {tend, RecordChan_MS.M}; MatrixDouble PULSE = mxGetMatrixDouble(prhs[63]); double Nctx_ms = mxGetScalarDouble(prhs[64]); double Nctx_fs = mxGetScalarDouble(prhs[65]); double ts_spks = mxGetScalarDouble(prhs[66]); MatrixInt32 Pt = mxGetMatrixInt32(prhs[67]); MatrixInt32 Pch = mxGetMatrixInt32(prhs[68], Pt.M, Pt.N); MatrixDouble Phz = mxGetMatrixDouble(prhs[69], Pt.M, Pt.N); int RANDSEED = mxGetScalarInt32(prhs[70]); const char* filename = mxArrayToString(prhs[71]); // =============================================================== // set the random numer seeds zigset(RANDSEED); // =============================================================== // Set up easy access to the MS and FS parameters #define _MS(__m,__n) (MSparams.data[__n * MSparams.M + __m]) #define _FS(__m,__n) (FSparams.data[__n * FSparams.M + __m]) // =============================================================== // get some dimensions if (!filename) throw "no filename supplied for log file"; // open log file FILE* fid = fopen(filename, "w"); if (!fid) throw "failed open log file"; fprintf(fid, "*************************************************** \n"); fprintf(fid, "*************** STARTING SIMULATION *************** \n"); fprintf(fid, "*************************************************** \n"); fprintf(fid, "tstart = %f msec \n", tstart); fprintf(fid, "tfinal = %f msec \n", tfinal); fprintf(fid, "dt = %f msec \n", dt); fprintf(fid, "tend = %i iterations \n", tend); fprintf(fid, " \n"); fprintf(fid, "N_MS = %i \n", N_MS); fprintf(fid, "Example MS parameters are C = %f, vr = %f, vt = %f, a = %f, b = %f, c = %f, d = %f, vp = %f, k = %f, EDA = %f, alpha = %f, beta1 = %f, beta2 = %f, gDA = %f \n", _MS(0,0), _MS(0,1), _MS(0,2), _MS(0,3), _MS(0,4), _MS(0,5), _MS(0,6), _MS(0,7), _MS(0,8), _MS(0,9), _MS(0,10), _MS(0,11), _MS(0,12), _MS(0,13), _MS(0,14)); fprintf(fid, " \n"); fprintf(fid, "N_FS = %i \n", N_FS); fprintf(fid, "Example FS parameters are C = %f, vr = %f, vt = %f, k = %f, a = %f, b = %f, c = %f, d = %f, vpeak = %f, vb = %f, eta = %f, epsilon = %f \n", _FS(0,0), _MS(0,1), _FS(0,2), _FS(0,3), _FS(0,4), _FS(0,5), _FS(0,6), _FS(0,7), _FS(0,8), _FS(0,9), _FS(0,10), _FS(0,11)); fprintf(fid, " \n"); fprintf(fid, "Eglu = %f \n", Eglu); fprintf(fid, "Egaba = %f \n", Egaba); fprintf(fid, "ts_glu_AMPA = %f \n", ts_glu_AMPA); fprintf(fid, "ts_glu_NMDA = %f \n", ts_glu_NMDA); fprintf(fid, "ts_gaba = %f \n", ts_gaba); fprintf(fid, "tau_fsgap = %f \n", tau_fsgap); fprintf(fid, " \n"); fprintf(fid, "gAMPA_MS = %f \n", Cctms_w.data[0]); fprintf(fid, "gNMDA_MS = %f \n", glu_ratio * Cctms_w.data[0]); fprintf(fid, "gGLUTAMATE_FS = %f \n", Cctfs_w.data[0]); fprintf(fid, " \n"); fprintf(fid, "MSspikebuffer = %i \n", MSspikebuffer); fprintf(fid, "FSspikebuffer = %i \n", FSspikebuffer); fprintf(fid, " \n"); fprintf(fid, "*************************************************** \n"); fclose(fid); // =============================================================== // Set and init some parameters double T; // Simulation Time // int extasteps = (int)(dt_ms / dt_fs); // Number of extra iterations needed to solve the FS neurons float VMS,UMS,VFS,UFS,U; // temp variables for the ms and fs neurons float Vms1,Ums1,Vfs1,Ufs1,tmp; // temp variables for mid-point float hdt = dt*0.5; // half time-step for midpoint method // parameters for the MS neurons int MSspikecount = 0; int SEQind_ms = 0; int SpikeEventCycle_MSGABA = 0; int maxSEQdelay_MSGABA = initSEQ_MSGABA.N - 1; int SpikeQueSize_MS = N_MS * (maxSEQdelay_MSGABA+1); double *Mg_ms; Mg_ms = (double *)malloc(N_MS * sizeof(double)); // Mg block for the MS NMDA channels double lambda1_ms; double lambda2_ms; // parameters for the FS neurons int FSspikecount = 0; int SEQind_fs; int SpikeEventCycle_FSGABA = 0; int maxSEQdelay_FSGABA = initSEQ_FSGABA_dims[1] - 1; int SpikeQueSize_FS = N_FS * (maxSEQdelay_FSGABA+1); double lambda1_fs; double lambda2_fs; // parameters for the MS neuron spike-event generator float p_MSSEG; // adjust for time in msec, not seconds! int *spk_ms; spk_ms = (int *)malloc(N_MS * sizeof(int)); float U_MSSEG; int R_MSSEG; double gluExp_ms_AMPA = exp(-dt / ts_glu_AMPA); double gluExp_ms_NMDA = exp(-dt / ts_glu_NMDA); double gabaExp_ms = exp(-dt / ts_gaba); float EMg = 1; // magnesium ion concentration in mM double SpksExp = exp(-dt / ts_spks); // parameters for the FS neuron spike-event generator float p_FSSEG; // adjust for time in msec, not seconds! int *spk_fs; spk_fs = (int *)malloc(N_FS * sizeof(int)); float U_FSSEG; int R_FSSEG; double gluExp_fs = exp(-dt / ts_glu_AMPA); double gabaExp_fs = exp(-dt / ts_gaba); // =============================================================== // The Outputs double *tout; // Time stamps double *Vmsout; // example MS membrane potential double *Vfsout; // Example FS membran potential double *STms; // MS neuron spike times double *STfs; // FS neuron spike times // output states so we can continue simulations double *Vms; // MS membrane potentials double *Ums; // MS U values double *Vfs; // FS membrane potentials double *Ufs; // FS U values double *Vfsgap; // Membrane potentials of the FS gap junctions double *Gglu_ms_AMPA; // *** Place holder for current glutamate input conductance to the MS neurons *** double *Gglu_ms_NMDA; // *** Place holder for current glutamate input conductance to the MS neurons *** double *Ggaba_ms; // Current input GABA conductance to the MS neurons double *SEQ_MSGABA; // Incomming GABAergic spike buffer for the FS neurons double *Gglu_fs; // *** Place holder for current glutamate input conductance to the MS neurons *** double *Ggaba_fs; // Current input GABA conductance to the MS neurons double *SEQ_FSGABA; // Incomming GABAergic spike buffer for the FS neurons double *RecordChan_MS_out; // output from the recording electrode //create the output arrays plhs[0] = mxCreateDoubleMatrix(tend, 1, mxREAL); tout = mxGetPr(plhs[0]); plhs[1] = mxCreateDoubleMatrix(tend, 1, mxREAL); Vmsout = mxGetPr(plhs[1]); plhs[2] = mxCreateDoubleMatrix(tend, 1, mxREAL); Vfsout = mxGetPr(plhs[2]); plhs[3] = mxCreateDoubleMatrix(MSspikebuffer, 2, mxREAL); STms = mxGetPr(plhs[3]); plhs[4] = mxCreateDoubleMatrix(FSspikebuffer, 2, mxREAL); STfs = mxGetPr(plhs[4]); plhs[5] = mxCreateNumericArray(ndim_ms,dims_ms,mxDOUBLE_CLASS,mxREAL); Vms = mxGetPr(plhs[5]); plhs[6] = mxCreateNumericArray(ndim_ms,dims_ms,mxDOUBLE_CLASS,mxREAL); Ums = mxGetPr(plhs[6]); plhs[7] = mxCreateNumericArray(ndim_fs,dims_fs,mxDOUBLE_CLASS,mxREAL); Vfs = mxGetPr(plhs[7]); plhs[8] = mxCreateNumericArray(ndim_fs,dims_fs,mxDOUBLE_CLASS,mxREAL); Ufs = mxGetPr(plhs[8]); plhs[9] = mxCreateNumericArray(ndim_fsgap,dims_fsgap,mxDOUBLE_CLASS,mxREAL); Vfsgap = mxGetPr(plhs[9]); plhs[10] = mxCreateNumericArray(ndim_ms,dims_ms,mxDOUBLE_CLASS,mxREAL); Gglu_ms_AMPA = mxGetPr(plhs[10]); plhs[11] = mxCreateNumericArray(ndim_ms,dims_ms,mxDOUBLE_CLASS,mxREAL); Gglu_ms_NMDA = mxGetPr(plhs[11]); plhs[12] = mxCreateNumericArray(ndim_ms,dims_ms,mxDOUBLE_CLASS,mxREAL); Ggaba_ms = mxGetPr(plhs[12]); plhs[13] = mxCreateNumericArray(initSEQ_MSGABA_ndim,initSEQ_MSGABA_dims,mxDOUBLE_CLASS,mxREAL); SEQ_MSGABA = mxGetPr(plhs[13]); plhs[14] = mxCreateNumericArray(ndim_fs,dims_fs,mxDOUBLE_CLASS,mxREAL); Gglu_fs = mxGetPr(plhs[14]); plhs[15] = mxCreateNumericArray(ndim_fs,dims_fs,mxDOUBLE_CLASS,mxREAL); Ggaba_fs = mxGetPr(plhs[15]); plhs[16] = mxCreateNumericArray(initSEQ_FSGABA_ndim,initSEQ_FSGABA_dims,mxDOUBLE_CLASS,mxREAL); SEQ_FSGABA = mxGetPr(plhs[16]); plhs[17] = mxCreateNumericArray(2, dims_RecordChan_MS_out,mxDOUBLE_CLASS,mxREAL); RecordChan_MS_out = mxGetPr(plhs[17]); // =============================================================== // Set up easy access to the cortical state and recording channels const int *CTX_state_dims = mxGetDimensions(prhs[58]); #define _CTX_state(__m,__n) (CTX_state[__n*CTX_state_dims[0]+__m]) const int *RecordChan_MS_out_dims = mxGetDimensions(plhs[17]); #define _RecordChan_MS_out(__m,__n) (RecordChan_MS_out[__n*RecordChan_MS_out_dims[0]+__m]) // =============================================================== // init the variables for (int i = 0; i < N_MS; i++){ Vms[i] = initVms.data[i]; Ums[i] = initUms.data[i]; } for (int i = 0; i < N_FS; i++){ Vfs[i] = initVfs.data[i]; Ufs[i] = initUfs.data[i]; } for (int i = 0; i < N_fsgap; i++){ Vfsgap[i] = initVfsgap.data[i]; } float *IAMPA_ms; IAMPA_ms = (float *)malloc(N_MS * sizeof(float)); float *INMDA_ms; INMDA_ms = (float *)malloc(N_MS * sizeof(float)); float *IDA_ms; IDA_ms = (float *)malloc(N_MS * sizeof(float)); float *IGABA_ms; IGABA_ms = (float *)malloc(N_MS * sizeof(float)); float *Isyn_ms; Isyn_ms = (float *)malloc(N_MS * sizeof(float)); float tmpIDA_ms; for (int i = 0; i < N_MS; i++){ IAMPA_ms[i] = 0; INMDA_ms[i] = 0; IDA_ms[i] = 0; IGABA_ms[i] = 0; Isyn_ms[i] = 0; tmpIDA_ms = 0; } float *IAMPA_fs; IAMPA_fs = (float *)malloc(N_FS * sizeof(float)); float *IDA_fs; IDA_fs = (float *)malloc(N_FS * sizeof(float)); float *IGABA_fs; IGABA_fs = (float *)malloc(N_FS * sizeof(float)); float *Isyn_fs; Isyn_fs = (float *)malloc(N_FS * sizeof(float)); float *Igapfs; Igapfs = (float *)malloc(N_FS * sizeof(float)); for (int j = 0; j < N_FS; j++){ IAMPA_fs[j] = 0.0; IGABA_fs[j] = 0.0; IDA_fs[j] = 0.0; Isyn_fs[j] = 0.0; Igapfs[j] = 0.0; } int Vgap1,Vgap2; // =============================================================== // Active D1 and D2 receptors for the MS and FS neurons lambda1_ms = DA; lambda2_ms = DA; lambda1_fs = DA; lambda2_fs = DA; // =============================================================== // run the simulation int SelectionCounter = 0; for (int t = (int)tstart; t < tend; t++){ T = t * dt; // reset the random seed if (UNI < (0.01*dt)){ RANDSEED++; zigset(RANDSEED); } // ================================================================ // Look for changes in the selection pulses if (Pt.data[SelectionCounter] == t){ printf("Selection Pulse Detected %f \n", T); if (Pch.data[SelectionCounter] == 1){ printf("Selection Pulse Channel %i \n", Pch.data[SelectionCounter]); for (int i = 0; i < CHAN1_MS.M; i++){ r_MSSEG.data[CHAN1_MS.data[i]] = Phz.data[SelectionCounter]; } for (int i = 0; i < CHAN1_FS.M; i++){ r_FSSEG.data[CHAN1_FS.data[i]] = Phz.data[SelectionCounter]; } } if (Pch.data[SelectionCounter] == 2){ printf("Selection Pulse Channel %i \n", Pch.data[SelectionCounter]); for (int i = 0; i < CHAN2_MS.M; i++){ r_MSSEG.data[CHAN2_MS.data[i]] = Phz.data[SelectionCounter]; } for (int i = 0; i < CHAN2_FS.M; i++){ r_FSSEG.data[CHAN2_FS.data[i]] = Phz.data[SelectionCounter]; } } SelectionCounter++; } // =============================================================== // Update the MS neurons for (int i = 0; i < N_MS; i++){ // --------------------------------------------------------------- // Update the MS spike-event que spk_ms[i] = 0; // reset the spike que int T_MSSEG = 0; p_MSSEG = r_MSSEG.data[i] * dt * 0.001; U_MSSEG = UNI; R_MSSEG = (U_MSSEG <= p_MSSEG); // the reference spike train for (int ist = 0; ist < N_MSSEG.data[i]; ist++){ if (UNI <= alpha_MSSEG.data[i]){ T_MSSEG = R_MSSEG; } else { T_MSSEG = (UNI <= p_MSSEG); } spk_ms[i] = spk_ms[i] + T_MSSEG; } // --------------------------------------------------------------- //Update the MS neurons cortical input Gglu_ms_AMPA[i] = Gglu_ms_AMPA[i] + ((Cctms_w.data[i]) * spk_ms[i]); Gglu_ms_AMPA[i] = Gglu_ms_AMPA[i] * gluExp_ms_AMPA; Gglu_ms_NMDA[i] = Gglu_ms_NMDA[i] + (glu_ratio * Cctms_w.data[i] * spk_ms[i]); Gglu_ms_NMDA[i] = Gglu_ms_NMDA[i] * gluExp_ms_NMDA; // --------------------------------------------------------------- // Mg block of the MS NMDA channels Mg_ms[i] = 1 / ( 1 + (EMg / 3.57) * exp(-Vms[i] * 0.062) ); // --------------------------------------------------------------- // get PSPs from the other MS and FS neurons Ggaba_ms[i] += SEQ_MSGABA[SpikeEventCycle_MSGABA*N_MS + i]; // Adds current GABAergic PSPs to the conductance bin Ggaba_ms[i] = Ggaba_ms[i] * gabaExp_ms; SEQ_MSGABA[SpikeEventCycle_MSGABA*N_MS + i] = 0; // reset the PSP buffer // --------------------------------------------------------------- // update the membrane VMS = Vms[i]; // save the previous state UMS = Ums[i]; // save the previous state IGABA_ms[i] = (Ggaba_ms[i] * (Egaba - VMS)); IAMPA_ms[i] = (Gglu_ms_AMPA[i] * (Eglu - VMS)) * (1 + _MS(i,12) * lambda1_ms); INMDA_ms[i] = Mg_ms[i] * (Gglu_ms_NMDA[i] * (Eglu - VMS)) * (1 + _MS(i,11) * lambda2_ms); IDA_ms[i] = lambda1_ms * _MS(i,13) * (Vms[i] - _MS(i,9)); Isyn_ms[i] = IAMPA_ms[i] + INMDA_ms[i] + IGABA_ms[i] + IDA_ms[i]; //Vms[i] = VMS + dt * ( ( _MS(i,8) * (1 - _MS(i,10)*lambda2_ms) * (VMS - _MS(i,1)) * (VMS - _MS(i,2)) - Ums[i]) + Isyn_ms[i] ) / _MS(i,0); //Ums[i] = Ums[i] + dt * _MS(i,3) * (_MS(i,4) * (VMS - _MS(i,1)) - Ums[i]); Vms1 = VMS + hdt * ( ( _MS(i,8) * (1 - _MS(i,10)*lambda2_ms) * (VMS - _MS(i,1)) * (VMS - _MS(i,2)) - UMS) + Isyn_ms[i] ) / _MS(i,0); Ums1 = UMS + hdt * _MS(i,3) * (_MS(i,4) * (VMS - _MS(i,1)) - UMS); Vms[i] = VMS + dt * (( _MS(i,8) * (1 - _MS(i,10)*lambda2_ms) * (Vms1 - _MS(i,1)) * (Vms1 - _MS(i,2)) - Ums1) + Isyn_ms[i] ) / _MS(i,0); Ums[i] = UMS + dt * _MS(i,3) * (_MS(i,4) * (Vms1 - _MS(i,1)) - Ums1); if (Vms[i] >= _MS(i,7)){ // Check for spike events VMS = _MS(i,7); Vms[i] = _MS(i,5); Ums[i] = Ums[i] + _MS(i,6); // --------------------------------------------------------------- // save the cell number and spike time if (MSspikecount < MSspikebuffer){ STms[MSspikecount] = i; STms[MSspikecount+MSspikebuffer] = T; MSspikecount++; } else if (MSspikecount >= MSspikebuffer){ printf("Warning, exceeded MS spike buffer size \n"); printf("%i %i \n", MSspikecount, MSspikebuffer); t = tend; } // --------------------------------------------------------------- // Update the Spike event que for the target cells for (int targcellind = Cmsms_b.data[i]; targcellind <= Cmsms_b.data[i+1]-1; targcellind++){ // for each of the target cells // get the index in the spike que for the target cell, given its delay SEQind_ms = Cmsms.data[targcellind] + ((SpikeEventCycle_MSGABA-1) + Cmsms_d.data[targcellind])*N_MS; if (SEQind_ms >= SpikeQueSize_MS){ // if SEind is larger than the spike que, wrap around SEQind_ms = SEQind_ms - SpikeQueSize_MS; } // add the spike event to the spike que for the target cell SEQ_MSGABA[SEQind_ms] = SEQ_MSGABA[SEQind_ms] + (Cmsms_w.data[targcellind] / ts_gaba); // update the Spike event que } } } // update the FS gap junctions for (int k = 0; k < N_fsgap; k++){ Vgap1 = Pgapfs.data[k]; Vgap2 = Pgapfs.data[k + N_fsgap]; Vfsgap[k] = Vfsgap[k] + dt * ((Vfs[Vgap1] - Vfsgap[k]) + (Vfs[Vgap2] - Vfsgap[k])) / tau_fsgap; } // --------------------------------------------------------------- // for each FS neuron // --------------------------------------------------------------- for (int j = 0; j < N_FS; j++){ float testIgapfs = Igapfs[j]; spk_fs[j] = 0; // reset the spike que int T_FSSEG = 0; p_FSSEG = r_FSSEG.data[j] * dt * 0.001; U_FSSEG = UNI; R_FSSEG = (U_FSSEG <= p_FSSEG); // the reference spike train for (int ist = 0; ist < N_FSSEG.data[j]; ist++){ if (UNI <= alpha_FSSEG.data[j]){ T_FSSEG = R_FSSEG; } else { T_FSSEG = (UNI <= p_FSSEG); } spk_fs[j] = spk_fs[j] + T_FSSEG; } // --------------------------------------------------------------- //Update the FS neurons cortical input Gglu_fs[j] = Gglu_fs[j] + (Cctfs_w.data[j] * spk_fs[j] / ts_glu_AMPA); Gglu_fs[j] = Gglu_fs[j] * gluExp_fs; // --------------------------------------------------------------- // get GABAergic input from the other FS neurons Ggaba_fs[j] += SEQ_FSGABA[SpikeEventCycle_FSGABA*N_FS + j]; // Adds current GABAergic PSPs to the conductance bin Ggaba_fs[j] = Ggaba_fs[j] * gabaExp_fs; if (SEQ_FSGABA[SpikeEventCycle_FSGABA*N_FS + j] > 1000){ printf("Too many spikes! %i %i \n", SEQ_FSGABA[SpikeEventCycle_FSGABA*N_FS + j], t); throw "Too many spikes"; } SEQ_FSGABA[SpikeEventCycle_FSGABA*N_FS + j] = 0; // reset the PSP buffer // --------------------------------------------------------------- // calculate the current from the gap junctions Igapfs[j] = 0.0; for (int source = Cgapfs_b.data[j]; source < Cgapfs_b.data[j+1]; source++){ Igapfs[j] = Igapfs[j] + Cgapfs_w.data[source] * (Vfsgap[Cgapfs.data[source]] - Vfs[j]); if (isinf(Igapfs[j])){ printf("\n \n **** Warning, Igapfs is a inf. Vfsgap %f Cgapfs %i source %i **** \n \n", Vfsgap[Cgapfs.data[source]], Cgapfs.data[source], source); throw "Igapfs is a Inf"; } } // --------------------------------------------------------------- //Update the FS neurons VFS = Vfs[j]; // save the previous state UFS = Ufs[j]; // save the previous state // DA modulation of the GABA currents IAMPA_fs[j] = (Gglu_fs[j] * (Eglu - Vfs[j])); IGABA_fs[j] = (Ggaba_fs[j] * (Egaba - Vfs[j])) * (1 - _FS(j, 11)*lambda2_fs); Isyn_fs[j] = IAMPA_fs[j] + IGABA_fs[j]; if (isnan(Isyn_fs[j])){ printf("Warning, Isyn_fs is a NaN %f, IAMPA = %f, IGABA = %f IDA_fs = %f\n", Isyn_fs[j], IAMPA_fs[j], IGABA_fs[j], IDA_fs[j]); printf("Warning, Vfs is a NaN \n"); throw "Vfs is a NaN"; } if (isnan(Igapfs[j])){ printf("Warning, Igapfs is a NaN \n"); throw "Igapfs is a NaN"; } if (isinf(Igapfs[j])){ printf("Warning, Igapfs is a inf \n"); throw "Igapfs is a Inf"; } // Vfs[j] = VFS + dt * (_FS(j, 3) * ((VFS - _FS(j, 1) * (1-_FS(j, 10)*lambda1_fs)) * (VFS - _FS(j, 2))) - Ufs[j] + Igapfs[j] + Isyn_fs[j] ) / _FS(j, 0); // midpoint estimate of V Vfs1 = VFS + hdt * (_FS(j, 3) * ((VFS - _FS(j, 1) * (1-_FS(j, 10)*lambda1_fs)) * (VFS - _FS(j, 2))) - UFS + Igapfs[j] + Isyn_fs[j] ) / _FS(j, 0); // midpoint estimate of U if (VFS < _FS(j, 9)){ //Ufs[j] = UFS + dt * -_FS(j, 4)*UFS; Ufs1 = UFS + hdt * -_FS(j, 4)*UFS; } else if (VFS >= _FS(j, 9)){ tmp = (VFS - _FS(j, 9)); //Ufs[j] = UFS + dt * _FS(j, 4) * (_FS(j, 5) * pow((VFS - _FS(j, 9)), 3) - UFS); Ufs1 = UFS + hdt * _FS(j, 4) * (_FS(j, 5) * tmp*tmp*tmp - UFS); } // second-step update of V Vfs[j] = VFS + dt * (_FS(j, 3) * ((Vfs1 - _FS(j, 1) * (1-_FS(j, 10)*lambda1_fs)) * (Vfs1 - _FS(j, 2))) - Ufs1 + Igapfs[j] + Isyn_fs[j] ) / _FS(j, 0); // second-step update of U if (VFS < _FS(j, 9)){ //Ufs[j] = UFS + dt * -_FS(j, 4)*UFS; Ufs[j] = UFS + dt * -_FS(j, 4)*Ufs1; } else if (VFS >= _FS(j, 9)){ tmp = (Vfs1 - _FS(j, 9)); //Ufs[j] = UFS + dt * _FS(j, 4) * (_FS(j, 5) * pow((VFS - _FS(j, 9)), 3) - UFS); Ufs[j] = UFS + dt * _FS(j, 4) * (_FS(j, 5) * tmp*tmp*tmp - Ufs1); } if (isnan(Vfs[j])){ printf("Warning, Isyn_fs = %f, and Igapfs = %f \n", Isyn_fs[j], Igapfs[j]); printf("Warning, Vfs is a NaN \n"); throw "Vfs is a NaN"; } // --------------------------------------------------------------- // Check for spike events if (Vfs[j] >= _FS(j, 8)){ VFS = _FS(j, 8); Vfs[j] = _FS(j, 6); Ufs[j] = Ufs[j] + _FS(j, 7); // --------------------------------------------------------------- // save the cell number and spike time if (FSspikecount < FSspikebuffer){ STfs[FSspikecount] = j; STfs[FSspikecount+FSspikebuffer] = T; FSspikecount++; } // check for overrun of the spike buffer else if (FSspikecount >= FSspikebuffer){ printf("Warning, exceeded FS spike buffer size \n"); throw "exceeded FS spike buffer size"; } // --------------------------------------------------------------- // Update the MS spike event que for (int targcellind = Cfsms_b.data[j]; targcellind <= Cfsms_b.data[j+1]-1; targcellind++){ // for each of the target cells // get the index in the spike que for the target cell, given its delay SEQind_ms = Cfsms.data[targcellind] + ((SpikeEventCycle_MSGABA-1) + Cfsms_d.data[targcellind])*N_MS; if (SEQind_ms >= SpikeQueSize_MS){ // if SEind is larger than the spike que, wrap around SEQind_ms = SEQind_ms - SpikeQueSize_MS; } // add the spike event to the spike que for the target cell SEQ_MSGABA[SEQind_ms] = SEQ_MSGABA[SEQind_ms] + (Cfsms_w.data[targcellind] / ts_gaba); // update the Spike event que } // --------------------------------------------------------------- // Update the FS spike event que for (int targcellind = Cfsfs_b.data[j]; targcellind <= Cfsfs_b.data[j+1]-1; targcellind++){ // for each of the target cells // get the index in the spike que for the target cell, given its delay SEQind_fs = Cfsfs.data[targcellind] + ((SpikeEventCycle_FSGABA-1) + Cfsfs_d.data[targcellind])*N_FS; // if SEind is larger than the spike que, wrap around if (SEQind_fs >= SpikeQueSize_FS){ SEQind_fs = SEQind_fs - SpikeQueSize_FS; } if ((Cfsfs_w.data[targcellind]) > 100){ printf("Warning, FS weight too big! %i %f \n", targcellind, Cfsfs_w.data[targcellind]); throw "FS weight too big!"; } // add the spike event to the spike que for the target cell SEQ_FSGABA[SEQind_fs] = SEQ_FSGABA[SEQind_fs] + (Cfsfs_w.data[targcellind] / ts_gaba); } } } // for each FS neurons // =============================================================== // update the MS PSP cycle position if (SpikeEventCycle_MSGABA < maxSEQdelay_MSGABA){ SpikeEventCycle_MSGABA++; } else { SpikeEventCycle_MSGABA = 0; } // update the FS PSP cycle position if (SpikeEventCycle_FSGABA < maxSEQdelay_FSGABA){ SpikeEventCycle_FSGABA++; } else { SpikeEventCycle_FSGABA = 0; } // =============================================================== // save some example neuron behaviour tout[t] = T; Vmsout[t] = Vms[0]; Vfsout[t] = Vfs[0]; for (int RecInd = 0; RecInd < RecordChan_MS.M; RecInd++){ _RecordChan_MS_out(t, RecInd) = Isyn_ms[RecordChan_MS.data[RecInd]]; } _RecordChan_MS_out(t, 0) = Vms[RecordChan_MS.data[1]]; _RecordChan_MS_out(t, 1) = Ums[RecordChan_MS.data[1]]; _RecordChan_MS_out(t, 2) = spk_ms[RecordChan_MS.data[1]]; _RecordChan_MS_out(t, 3) = Gglu_ms_AMPA[RecordChan_MS.data[1]]; _RecordChan_MS_out(t, 4) = Gglu_ms_NMDA[RecordChan_MS.data[1]]; _RecordChan_MS_out(t, 5) = IAMPA_ms[RecordChan_MS.data[1]]; _RecordChan_MS_out(t, 6) = INMDA_ms[RecordChan_MS.data[1]]; _RecordChan_MS_out(t, 7) = Ggaba_ms[RecordChan_MS.data[1]]; _RecordChan_MS_out(t, 8) = IGABA_ms[RecordChan_MS.data[1]]; _RecordChan_MS_out(t, 9) = IDA_ms[RecordChan_MS.data[1]]; _RecordChan_MS_out(t, 10) = Isyn_ms[RecordChan_MS.data[1]]; _RecordChan_MS_out(t, 11) = Vms[RecordChan_MS.data[10]]; _RecordChan_MS_out(t, 12) = Ums[RecordChan_MS.data[10]]; _RecordChan_MS_out(t, 13) = spk_ms[RecordChan_MS.data[10]]; _RecordChan_MS_out(t, 14) = Gglu_ms_AMPA[RecordChan_MS.data[10]]; _RecordChan_MS_out(t, 15) = Gglu_ms_NMDA[RecordChan_MS.data[10]]; _RecordChan_MS_out(t, 16) = IAMPA_ms[RecordChan_MS.data[10]]; _RecordChan_MS_out(t, 17) = INMDA_ms[RecordChan_MS.data[10]]; _RecordChan_MS_out(t, 18) = Ggaba_ms[RecordChan_MS.data[10]]; _RecordChan_MS_out(t, 19) = IGABA_ms[RecordChan_MS.data[10]]; _RecordChan_MS_out(t, 20) = IDA_ms[RecordChan_MS.data[10]]; _RecordChan_MS_out(t, 21) = Isyn_ms[RecordChan_MS.data[10]]; _RecordChan_MS_out(t, 22) = Vms[RecordChan_MS.data[15]]; _RecordChan_MS_out(t, 23) = Ums[RecordChan_MS.data[15]]; _RecordChan_MS_out(t, 24) = spk_ms[RecordChan_MS.data[15]]; _RecordChan_MS_out(t, 25) = Gglu_ms_AMPA[RecordChan_MS.data[15]]; _RecordChan_MS_out(t, 26) = Gglu_ms_NMDA[RecordChan_MS.data[15]]; _RecordChan_MS_out(t, 27) = IAMPA_ms[RecordChan_MS.data[15]]; _RecordChan_MS_out(t, 28) = INMDA_ms[RecordChan_MS.data[15]]; _RecordChan_MS_out(t, 29) = Ggaba_ms[RecordChan_MS.data[15]]; _RecordChan_MS_out(t, 30) = IGABA_ms[RecordChan_MS.data[15]]; _RecordChan_MS_out(t, 31) = IDA_ms[RecordChan_MS.data[15]]; _RecordChan_MS_out(t, 32) = Isyn_ms[RecordChan_MS.data[15]]; _RecordChan_MS_out(t, 33) = Vms[RecordChan_MS.data[20]]; _RecordChan_MS_out(t, 34) = Ums[RecordChan_MS.data[20]]; _RecordChan_MS_out(t, 35) = spk_ms[RecordChan_MS.data[20]]; _RecordChan_MS_out(t, 36) = Gglu_ms_AMPA[RecordChan_MS.data[20]]; _RecordChan_MS_out(t, 37) = Gglu_ms_NMDA[RecordChan_MS.data[20]]; _RecordChan_MS_out(t, 38) = IAMPA_ms[RecordChan_MS.data[20]]; _RecordChan_MS_out(t, 39) = INMDA_ms[RecordChan_MS.data[20]]; _RecordChan_MS_out(t, 40) = Ggaba_ms[RecordChan_MS.data[20]]; _RecordChan_MS_out(t, 41) = IGABA_ms[RecordChan_MS.data[20]]; _RecordChan_MS_out(t, 42) = IDA_ms[RecordChan_MS.data[20]]; _RecordChan_MS_out(t, 43) = Isyn_ms[RecordChan_MS.data[20]]; } // end of the simulation loop } // end of the main simulation function // ======================================================================== // Code to catch exceptions before they crash DCE!!! // ======================================================================== #include <exception> using namespace std; void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { try { // dodgy code execute(nlhs, plhs, nrhs, prhs); } catch(std::exception& e) { printf(e.what()); return; } catch(const char* e) { printf(e); return; } catch(...) { // report and close gracefully printf("an unexpected exception occurred\n"); return; } }