import glob
import functions as f
import config_10 as config
import numpy as np
threshold = config.spine_thresh
import matplotlib.pyplot as plt
ending = 'PSD.sa1[0]_head.sa1[0]_neck.sa1[0]'
add = '_runtime_900000-all_species-conc.txt_concentrations_'
res_file = 'spine_results.csv'
reg_seeds = ['','_new_seed_195','_new_seed_300','_new_seed_450']
reg_sseeds = ['245','195','300','450']
basal_list = [
'Model_one_short_dendrite_PKAc_times_3_switching_L_pump_neurogranin_3_min_5_Hz_lower_Ca',
'Model_one_short_dendrite_PKAc_times_3_switching_L_pump_neurogranin_ISO_bath_1000_nM',
'Model_one_short_dendrite_PKAc_times_3_switching_L_pump_neurogranin_1_train_100_Hz',
'Model_one_short_dendrite_PKAc_times_3_switching_L_pump_neurogranin_4_trains_massed',
'Model_one_short_dendrite_PKAc_times_3_switching_L_pump_neurogranin_4_trains_spaced',
'Model_one_short_dendrite_PKAc_times_3_switching_L_pump_neurogranin_ISO_bath_1_train_100_Hz_1000_nM',
'Model_one_short_dendrite_PKAc_times_3_switching_L_pump_neurogranin_ISO_bath_3_min_5_Hz_higher_Ca_1000_nM',
]
#{'LFS':0,'ISO':0,'4x-HFS-3s':0,'4xHFS-80s':0,'ISO+HFS':0,'ISO+LFS':0,'HFSnoPKA':0,'4xHFS-3snoPKA':0,'4xHFS-80snoPKA':0,'ISO+HFSnoPKA':0,'ISO+LFSnoPKA':0,'Carvedilol+HFS':0,'Carvedilol+LFS':,'propranolol+4xHFS':0,'ICI-118551+4xHFS':0}
pars = ['LFS','ISO','HFS','4xHFS-3s','4xHFS-80s','ISO+HFS','ISO+LFS','HFS no PKA','4xHFS-3s no PKA','4xHFS-80s no PKA','ISO+HFS no PKA','ISO+LFS no PKA','Carvedilol+HFS','Carvedilol+LFS','Propranolol+4xHFS','ICI-118551+4xHFS']
p_value_low ={'LFS':'1','ISO':'0.9998','HFS':'0.0043','4xHFS-3s':'0.01','4xHFS-80s':'0.0007','ISO+HFS':'0.0028','ISO+LFS':'0.0146','HFS no PKA':'0.9018','4xHFS-3s no PKA':'0.0013','4xHFS-80s no PKA':'0.0007','ISO+HFS no PKA':'0.0051','ISO+LFS no PKA':'1','Carvedilol+HFS':'0.0704','Carvedilol+LFS':'1','Propranolol+4xHFS':'0.0110','ICI-118551+4xHFS':'0.0027'}
p_value_high = {'LFS':'1','ISO':'1.0000','HFS':'0.0114','4xHFS-3s':'0.01','4xHFS-80s':'0.0010','ISO+HFS':'0.0032','ISO+LFS':'0.0501','HFS no PKA':'0.9556','4xHFS-3s no PKA':'0.0036','4xHFS-80s no PKA':'0.0010','ISO+HFS no PKA':'0.0119','ISO+LFS no PKA':'1','Carvedilol+HFS':'0.1451','Carvedilol+LFS':'1','Propranolol+4xHFS':'0.0129','ICI-118551+4xHFS':'0.0073'}
output_name ='spine_results.tex'
strings = '''
\\begin{table}
\caption{Robustness of the spine signature threshold. STD is an abbrevation for standard deviation. p value is significance of one-sided ttest comparing time signature is above the amplitude threshold to the 10s duration threshold. Degrees of freedom = 3 for all T-Tests.}
\label{tab:spine_robustness}
\\begin{tabular}{|p{3.2cm}|p{1.9cm}|p{1.9cm}|p{1.9cm}|p{1.9cm}|p{1.9cm}|p{1.9cm}|}
\hline
\multirow{2}{*}{stimulation paradigm}& \multicolumn{3}{|c|}{above the upper threshold}&\multicolumn{3}{|c|}{above the lower threshold}\\\\
\hhline{~------}
&stim. no.&mean time $\pm$ STD&p-value& stim. no.&mean time $\pm$ STD&p-value\\\\
\hline
'''
def vari(lista):
mean = 1.*sum(lista)/len(lista)
return sum([(x-mean)**2 for x in lista] )/(len(lista)-1)
if __name__ == '__main__':
f_2 = open(res_file,'w')
f_2.write('Paradigm, seed, time above lower, time above upper\n')
st = f.make_st_spine(config.steady_state+config.ending[0])
for j, fbasal in enumerate(basal_list):
flist = []
seeds = reg_seeds
sseeds = reg_sseeds
for seed in seeds:
flist.append(fbasal+seed+add+ending)
outs_low = []
outs_high = []
l = 0
h = 0
for i,fname in enumerate(flist):
f_2.write(pars[j]+', '+sseeds[i]+', ')
time_st,camkii,pkac,epac,gibg = f.extract_data(fname,0)
dt = time_st[1]-time_st[0]
data = []
data.extend([camkii,pkac,epac,gibg])
new_data = []
for k,d in enumerate(data):
new_data.append( d/st[k]/config.max_val[0][config.keys[k]])
out = f.calculate_signature_spine(new_data)
low = sum((np.sign(out-threshold[0])+1)*dt)*0.5/1000#sum((np.sign(out-spine_threshold[0])+1)*dt*0.5)/1000
high = sum((np.sign(out-threshold[1])+1)*dt)*0.5/1000#sum((np.sign(out-spine_threshold[1])+1)*dt*0.5)/1000
f_2.write(str(low)+', '+str(high)+'\n')
outs_low.append(low)
outs_high.append(high)
print low, high
outs_low.append(low)
outs_high.append(high)
if low >10.0:
l += 1
if high> 10.0:
h += 1
if len(outs_low):
mean_low = int(sum(outs_low)/len(outs_low))
print len(outs_low), mean_low,
if len(outs_low)>1:
print int(vari(outs_low)**0.5)
if len(outs_high):
mean_high = int(sum(outs_high)/len(outs_high))
print len(outs_high), mean_high,
if len(outs_high)> 1:
print vari(outs_high)**0.5
strings += pars[j]
strings +='&'
if len(outs_high):
strings += str(h)+'&'+str(mean_high)
if len(outs_high)>1:
strings += '$\pm$'+ str(int(vari(outs_high)**0.5))
strings +='&'
strings += str(p_value_low[pars[j]])+'&'
if len(outs_low):
strings += str(l)+'&'+str(mean_low)
if len(outs_low)>1:
strings += '$\pm$'+ str(int(vari(outs_low)**0.5))
strings += '&'+str(p_value_high[pars[j]])
strings +='\\\\'
strings += '\n\hline\n'
strings += '''\end{tabular}\n\end{table}'''
fout = open(output_name,'w')
fout.write(strings)
#plt.show()