import numpy as np
vol = {'PSD':0.013614,'head':0.03951,'neck':0.007068, 'dendrite':4.799973}
dend_area = 16.0
vols = [0.013614,.03951,0.007068]
vols_spine = 0.013614+.03951+0.007068
if __name__ == '__main__':
fname_list = [
'Model_long_dendrite_PKAc_times_3_switching_L_pump_neurogranin_4_trains_spaced_6_and_7_uniform_dendrite_runtime_900000-',
'Model_long_dendrite_PKAc_times_3_switching_L_pump_neurogranin_4_trains_spaced_3_and_7_uniform_dendrite_runtime_900000-'
]
types_dend = [ 'CaMKII', 'PKAc','AC_dend']
types_spine = [
[
'CaMKII',
'CaMKII',
'CaMKII'
],
[
'PKAc',
'PKAc',
'PKAc'
],
[
'',
'AC_head',
''
],
[
'Glur',
'',
''
]
]
middle = '-conc.txt_concentrations_'
endings_spine = ['PSD.sa1', 'head.sa1', 'neck.sa1']
for i in range(8):
for fname_base in fname_list:
for types in types_spine:
d = []
for j,t in enumerate(types):
if t:
fname = fname_base+t+middle+endings_spine[i]+'['+str(j)+']'
f = open(fname)
header = f.readline()
data = np.loadtxt(f)*vols[j]
d.append(data)
data = d[0]
for j,dd in enumerate(d[1:]):
data += dd
data = data/vols_spine
new_fname = fname_base+t+middle+'PSD_head_neck_'+str(i)
np.savetxt(new_fname,data,header=header, comment='')