%------------------------------------------------------------------------------------------ % % Title: Calcium Signals in Small Structures % Filename: CaSignal_main.par % Author: Ronald van Elburg % % Associated Paper: % Cornelisse LN, van Elburg RAJ, Meredith RM, Yuste R, Mansvelder HD (2007) % High Speed Two-Photon Imaging of Calcium Dynamics in Dendritic Spines: % Consequences for Spine Calcium Kinetics and Buffer Capacity. % PLoS ONE 2(10): e1073 doi:10.1371/journal.pone.0001073 % % Purpose: % To show how the Calcium signal changes in time after an % actionpotential and how these timecourses depend on the % distance to the membrane and the membrane morphology which can be % spherical (spine) or cylindrical (dendrite). % % History, Background, Related Papers: % This file is developed for CalC 5.0.3 % % Other Files Loaded: none % % Associated scripts: % Calc: % CaSignal_Exp<ExperimentName><GeometryName>.par % % Matlab postprocessing: % CaSignal_Exp<ExperimentName>.m % % Output: % None, this file contains a declarative definition off the model % and its default parameters. The actual simulations are described in other % par-files which include this file. % % % Remark: Best viewed with tabsize=4 % % % Initial Creation Date: 2004-12-01 % ChangeNo Date ChangedBy Description of Changes % PR001 2004-12-01 Ronald van Elburg Creation % PR002 2007-04-23 Ronald van Elburg Parameters constrained experimentally %----------------------------------------------------------------------------------- % Meta Parameters: % Because CalC language is almost purely declarative, it is possible % to refer forward to the predefined constants when overruling the Structure % setting from a script. Structure = Disc_Structure Sphere_Structure = 0 Cylinder_Structure = 1 Disc_Structure = 2 %Numerical accuracy adaptive timestep accuracy = 0.01 % Default Parameter Values %R_Structure = 0.57 % Radius of the simulated structure: Cylinder or Sphere (0.57 um) CylinderLengthRadiusRatio = 2 % Length/Radius of the simulated structure CylinderLength = CylinderLengthRadiusRatio * R_Structure % CylinderLength (um) HalfCylinderLength = CylinderLength/2 % HalfCylinderLength (um) needed for positioning Current Source D_Calcium = 0.22 % Ca diffusion coefficient (0.22 um^2/ms based on Allbritton et al. 1992) Background_Ca = 0.11 % Uniform Initial Calcium Concentration 0.11 uM based on exp this paper % (cf. 0.08 uM based on Sabatini et al. 2002) D_EndogenousBuffer = 0 % Immobile endogenous buffer, diffusion coefficient =0 KPlus_EndogenousBuffer = 0.5 % Endogenous buffer calcium binding rate (0.5/(ms uM) based on Klingauf,Neher 1997) KD_EndogenousBuffer = 10 % Endogenous buffer calcium affinity (10 uM based on Klingauf,Neher 1997, Neher Augustine,1992 ) D_Dye = 0.05 % Diffusion Constant Mobile Fluorescent Dye (0.05 um^2/ms based on Timmerman Ashley 1986, Wagner, Keizer, 1994) Total_Dye = 100 % Total dye concentration (100 uM as in pipette) KPlus_Dye = 0.45 % Fluorescent dye calcium binding rate (0.45/(ms uM) based on Naraghi 1997) KD_Dye = 0.205 % Fluorescent dye calcium affinity (0.205 uM Sabatini 2002) t_actionpotential = 10 % Centre position of calcium current pulse % Dendrite and Spine specific parameters, these parameters were % determined experimentally or derived from the first parameter scan. if Structure==Disc_Structure % Dendrite specific settings Total_EndogenousBuffer = 660 % Total endogenous buffer concentration (660 uM, this paper) n_ions = 4400 % Number of calcium ions entering with 1 actionpotential (this paper) mingamma_0 = -0.465 % Extrusion rate (-0.24 uM/ms this paper) pulselength = 1.75 % Width of the calcium current pulse R_Structure = 0.61 % Radius of the simulated structure: Cylinder (0.61 um) Sigma = 2/R_Structure % For backward compatabiltiy scripts relying on sigma endif if Structure==Cylinder_Structure % Dendrite specific settings Total_EndogenousBuffer = 660 % Total endogenous buffer concentration (660 uM, this paper) n_ions = 4400 % Number of calcium ions entering with 1 actionpotential (this paper) mingamma_0 = -0.465 % Extrusion rate (-0.49 uM/ms this paper) pulselength = 1.75 % Width of the calcium current pulse R_Structure = 0.61 % Radius of the simulated structure: Cylinder (0.61 um) Sigma = 2/R_Structure % For backward compatabiltiy scripts relying on sigma endif if Structure==Sphere_Structure % Spine specific settings Total_EndogenousBuffer = 210 % Total endogenous buffer concentration (210 uM, this paper) n_ions = 2000 % Number of calcium ions entering with 1 actionpotential (this paper) mingamma_0 = -0.46 % Extrusion rate (-0.45 uM/ms this paper) pulselength = 1.55 % Width of the calcium current pulse R_Structure = 0.47 % Radius of the simulated structure: Cylinder (0.47 um) Sigma = 3/R_Structure endif %Fundamental constants pi = 3.14159265358979 % Pi sqrt_of_pi = 1.77245385090552 % Square root of pi elementaryCharge = 1.60217733e-19 % Electron charge (1.60217733e-19 C) AvagradoConstant = 6.00221367e23 % Avagrado's Constant E21OVERAvagrado = 1e21/AvagradoConstant % Transformation Factor Used to get Calcium Current in the right units % Status Statements verbose = 2 % Default level of simulation status statements, 0=silent % Geometry if Structure==Disc_Structure geometry = disc % Cylinder Geometry (2 dimensional) volume 0 R_Structure % Inner (0) and outer radius (R_Structure) of the Cylinder Surface_Structure=2*pi*R_Structure % Size of the Surface % Numerics grid 25 % Use 25 shells for the computation endif if Structure==Cylinder_Structure geometry = cylindrical % Cylinder Geometry (2 dimensional) volume 0 R_Structure 0 CylinderLength % Inner (0) and outer radius (R_Structure) of the Cylinder % and start (0) and end (CylinderLength) of the cylinder in the Z-direction Surface_Structure=2*pi*R_Structure*CylinderLength % Size of the Surface % Numerics grid 25 25 % Use 25 shells and 25 disks for the computation endif if Structure==Sphere_Structure geometry = spherical % Cylinder Geometry (2 dimensional) volume 0 R_Structure % Inner (0) and outer radius (R_Structure) of the Sphere Surface_Structure=4*pi*R_Structure*R_Structure % Size of the Surface % Numerics grid 25 % Use 25 shells for the computation endif % Calcium Diffusion and Sources Ca.D = D_Calcium % this defines the Ca diffusion coefficient (um^2/ms) Ca.bgr = Background_Ca % Initial and Background Ca concentration (uM) % Boundary Conditions bc.define CalciumPump Ca.D mingamma_0 0 0 % A linearized Calcium Pump: Ca.D d[Ca]/dr=mingamma_0([Ca]-[Ca]_background) R_Source=0.99999999*R_Structure % Due to rounding errors in the C-code the source may end up outside the structure % , shifting it in a small amount prevents this from happening. if Structure==Disc_Structure % Pump Ca.bc Neumann CalciumPump % Influx Ca.source R_Source 0 endif if Structure==Cylinder_Structure % Pump Ca.bc Neumann CalciumPump Neumann Neumann % Influx Ca.source R_Source HalfCylinderLength 0 HalfCylinderLength current.shape square endif if Structure==Sphere_Structure % Pump Ca.bc Neumann CalciumPump % Influx Ca.source R_Source 0 endif % Calcium Current: CalciumCurrent:= n_ions*Surface_Structure*E21OVERAvagrado/(sqrt_of_pi*pulselength)*exp(-((t-t_actionpotential)/pulselength)^2) % Endogenous Buffer buffer EndogenousBuffer % Create Buffer EndogenousBuffer EndogenousBuffer.D = D_EndogenousBuffer % Endogenous buffer diffusion coefficient (um^2/ms) EndogenousBuffer.total = Total_EndogenousBuffer % Total endogenous buffer concentration (uM) % Binding/Unbinding Rate Constants EndogenousBuffer.kplus = KPlus_EndogenousBuffer % Endogenous buffer calcium binding rate (1/(ms uM)) EndogenousBuffer.KD = KD_EndogenousBuffer % Endogenous buffer calcium affinity (uM) % Boundary Conditions EndogenousBuffer.bc all Neumann % No flux of endogeous buffer through the boundary % Fluorescent Dye buffer Dye % Create buffer Dye: Oregon Green Bapta-1 fluorescent dye Dye.D = D_Dye % Fluorescent dye diffusion coefficient (um^2/ms) Dye.total = Total_Dye % Total dye concentration (uM) % Binding/Unbinding Rate Constants Dye.kplus = KPlus_Dye % Fluorescent dye calcium binding rate (1/(ms uM)) Dye.KD = KD_Dye % Fluorescent dye calcium affinity (uM) % Boundary Conditions Dye.bc all Neumann % No flux of dye through the boundary