# default: gnap=2,gcan=0.7,I=1 (SD-Burst) # AUGUST 2010 # cell is combination of Nap and CaN burster (Can closed-cell model with ER in dendrtes) # NaP burster is from from Butera, 1999; setting gcan=0 reproduce Butera 1999 model # Frequency of Ca oscillations controlled by either Catot or I (larger values - faster bursting) # units: V = mV; Cm = pF; g = uS minf=1/(1+exp((v-vm) /sm)) ninf=1/(1+exp((v-vn) /sn)) minfp=1/(1+exp((v-vmp)/smp)) hinf=1/(1+exp((v-vh) /sh)) taun=taunb/cosh((v-vn)/(2*sn)) tauh=tauhb/cosh((v-vh)/(2*sh)) I_na=gna*minf^3*(1-n)*(v-vna) I_k=gk*n^4*(v-Vk) I_nap=gnap*minfp*h*(v-vna) I_l =gl*(v-vleaks) # Equations for CaN current caninf =1/(1+(Kcan/C)^ncan) I_can=gcan*caninf*(v-vna) #Fluxes in and out of ER # l is fraction of open IP3 channels J_ER_in=(LL + P*( (I*C*l)/( (I+Ki)*(C+Ka) ) )^3 )*(Ce - C) J_ER_out=Ve*C^2/(Ke^2+C^2) Ce = (Ct - C)/sigma # Equations v'= (-I_k - I_na-I_nap-I_l-I_aps-I_can)/Cms n'= (ninf-n)/taun h'= (hinf-h)/tauh C' = fi*( J_ER_in- J_ER_out) l' = A*( Kd - (C + Kd)*l ) # Auxilary variables aux Ce=Ce aux ican=I_can aux inaps=I_nap #Initial conditions v(0)=-50 n(0)=0.004 h(0)=0.33 C(0)=0.03 l(0)=0.93 # Voltage parameters par Cms=21, I_aps=0 num vna=50,vk=-85, vleaks=-58 num vm=-34,vn=-29, vmp=-40, vh=-48 num sm=-5, sn=-4, smp=-6, sh=5 num taunb=10, tauhb=10000, par gk=11.2, gna=28, gnap=2,gl=2.3 # Ca parameters par Kcan=0.74, ncan=0.97,gcan=0.7 par I=1 par Ct=1.25 par fi=0.000025 num LL=0.37 par P=31000 par Ki=1.0 par Ka=0.4 par Ve=400 par Ke=0.2 par A=0.005 par Kd=0.4 par sigma=0.185 @ dt=0.1,total=10000,meth=qualrk,xp=t,yp=v @ xlo=0,xhi=10000,ylo=-60,yhi=10.,bound=500001,maxstor=5000001 done