: The m and h are form sheets 2007
:s and u are form Delmas
: run NaV18_delmas.m to plot the model
NEURON {
SUFFIX nav1p8
USEION na READ ena WRITE ina
RANGE gbar, ena, ina
}
UNITS {
(S) = (siemens)
(mV) = (millivolts)
(mA) = (milliamp)
}
PARAMETER {
gbar = 0 (S/cm2) : =220e-9/(100e-12*1e8) (S/cm2) : 220(nS)/100(um)^2
kvot_qt
celsiusT
shift_act = 0 (mV)
shift_inact =0 (mV)
}
ASSIGNED {
v (mV) : NEURON provides this
ina (mA/cm2)
g (S/cm2)
tau_h (ms)
tau_m (ms)
tau_s (ms)
tau_u (ms)
minf
hinf
sinf
uinf
ena (mV)
am
bm
}
STATE { m h s u }
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * m^3* h * s * u
ina = g * (v-ena)
}
INITIAL {
: assume that equilibrium has been reached
rates(v)
m=minf
h=hinf
s=sinf
u=uinf
}
DERIVATIVE states {
rates(v)
m' = (minf - m)/tau_m
h' = (hinf - h)/tau_h
s' = (sinf - s)/tau_s
u' = (uinf - u)/tau_u
}
FUNCTION rates(Vm (mV)) {
am= 2.85-(2.839)/(1+exp((Vm-1.159)/13.95))
bm= (7.6205)/(1+exp((Vm+46.463)/8.8289))
tau_m = 1/(am+bm)
minf = am/(am+bm)
hinf= 1/(1+exp((Vm+32.2)/4))
tau_h=(1.218+42.043*exp(-((Vm+38.1)^2)/(2*15.19^2)))
tau_s = 1/(alphas(Vm) + betas(Vm))
sinf = 1/(1 + exp((Vm + 45)/8(mV)))
tau_u = 1/(alphau(Vm) + betau(Vm))
uinf = 1/(1 + exp((Vm + 51)/8(mV)))
kvot_qt=1/((2.5^((celsiusT-22)/10)))
tau_m=tau_m*kvot_qt
tau_h=tau_h*kvot_qt
tau_s=tau_s*kvot_qt
tau_u=tau_u*kvot_qt
}
FUNCTION alphas(Vm (mV)) (/ms) {
alphas= 0.001(/ms)*5.4203/(1 + exp((Vm + 79.816)/16.269(mV)))
}
FUNCTION alphau(Vm (mV)) (/ms) {
alphau= 0.0002(/ms)*2.0434/(1 + exp((Vm + 67.499)/19.51(mV)))
}
FUNCTION betas(Vm (mV)) (/ms) {
betas= 0.001(/ms)*5.0757/(1 + exp(-(Vm + 15.968)/11.542(mV)))
}
FUNCTION betau(Vm (mV)) (/ms) {
betau= 0.0002(/ms)*1.9952/(1 + exp(-(Vm + 30.963)/14.792(mV)))
}