: Author: David Catherall; Grill Lab; Duke University
: Created: November 2016
: NaKpump is the Sodium-Potassium Pump in Schild 1994
: Adapted from Leo Medina's implementation from Lindblad et al Am J Physiol 1996 275:H1666
: Original model has been modified to assume constant nai
: Neuron Block creates mechanism
NEURON {
SUFFIX NaKpumpSchild :Sets suffix of mechanism for insertion into models
USEION k READ ko WRITE ik :Lays out which NEURON variables will be used/modified by file
USEION na READ nai WRITE ina :Since the mechanism uses two ions, two USEION statements are necessary
RANGE INaKmax, ina, ink, Kmko, Kmnai, ik :Allows variables to be modified in hoc and collected in vectors
}
: Defines Units different from NEURON base units
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
}
: Defines variables which will have a constant value throughout any given simulation run
PARAMETER {
INaKmax22 = 0.009726135 (mA/cm2) <0,1e6> :INaKmax at 22 degC
Kmnai = 5.46 (mM) <0,1e6>
Kmko = 0.621 (mM) <0,1e6>
Q10NaK = 1.16
Q10TempA = 22.85 (degC) : Used to shift INakmax value based on temperature with equation : tau(T1)=tau(Q10TempA)*Q10^((Q10TempA-T1)/Q10TempB)
Q10TempB = 10 (degC)
}
: Defines variables which will be used or calculated throughout the simulation which may not be constant. Also included NEURON provided variables, like v, celsius, and ina
ASSIGNED {
:NEURON provided Variables
celsius (degC)
v (mV)
ko (mM)
nai (mM)
ik (mA/cm2)
ina (mA/cm2)
:Model Specific Variables
ink (mA/cm2)
INaKmax (mA/cm2)
}
: This block iterates the variable calculations and uses those calculations to calculate currents
BREAKPOINT { LOCAL fnk
fnk = (v + 150)/(v + 200)
ink = INaKmax*fnk*((nai/(nai+Kmnai))^3)*((ko/(ko+Kmko))^2) : Changed this line to reflect the exponents given in Schild 1994, instead of the orginal exponents in Leo's model.
ina = 3*ink
ik = -2*ink
}
:Initialize INakmax, as it is temperature dependent
INITIAL {
INaKmax = INaKmax22*Q10NaK^((Q10TempA-celsius)/Q10TempB)
}
:Note that there are no state variables, and as such, no differential equations