: h.mod is the h channel
: from Tom Andersson Sensitivity studies of voltage-dpendent conductance in neurons
: Tom has build his model on Kouranova 2008 Hyoerpolarization -activated cyclic nuleotide-gated channel mRNA and protein expression in large versus mall diameter dorsal root ganglion neurons: correlation with hyperpolarization-activated current
NEURON {
SUFFIX h
USEION k READ ek, ko, ki WRITE ik
USEION na READ ena, nao, nai WRITE ina
RANGE gbar, ena, ik, ina, ek, ekna, celsiusT
}
UNITS {
(molar) = (1/liter) : moles do not appear in units
(mM) = (millimolar)
(S) = (siemens)
(mV) = (millivolts)
(mA) = (milliamp)
}
PARAMETER {
gbar (S/cm2): = 30e-6
ekna (mV): the combined rev pot from Na and k
kvot_qt
celsiusT
}
ASSIGNED {
v (mV) : NEURON provides this
ik (mA/cm2)
ina (mA/cm2)
g (S/cm2)
tau_n_s (ms)
tau_n_f (ms)
ninfs
ninff
kh
ek (mV)
ena (mV)
ki (mM)
ko (mM)
nai (mM)
nao (mM)
}
STATE { ns nf }
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * (0.5*ns+0.5*nf)
ina=0.5*g*(v-ena)
ik=0.5*g*(v-ek)
:ekna=58*log10((1.0*ko + 0.4*nao)/(1.0*ki + 0.4*nai))
:kh=g*(v-ekna)/0.6
:if (kh>0) {
:ik = kh
:ina = -kh*0.4
:}else{
:ik = -kh
:ina = kh*0.4
:}
}
INITIAL {
: assume that equilibrium has been reached
ns = 1./(1+exp((v+87.2)/9.7(mV)))
nf = 1./(1+exp((v+87.2)/9.7(mV)))
}
DERIVATIVE states {
rates(v)
ns' = (ninfs - ns)/tau_n_s
nf' = (ninff - nf)/tau_n_f
}
FUNCTION rates(Vm (mV)) (/ms) {
ninfs = 1./(1+exp((Vm+87.2)/9.7(mV)))
ninff = 1./(1+exp((Vm+87.2)/9.7(mV)))
tau_n_s = 1(ms)*(300+542*exp((Vm+25)/-20(mV)))
if (Vm<-70) {tau_n_s=1(ms)*(2500+100*exp((Vm+240)/50(mV)))}
tau_n_f=1(ms)*(140+50*exp((Vm+25)/-20(mV)))
if (Vm<-70) {tau_n_f=1(ms)*(250+12*exp((Vm+240)/50(mV)))}
kvot_qt=1/((3^((celsiusT-22)/10)))
tau_n_s=tau_n_s*kvot_qt
tau_n_f=tau_n_f*kvot_qt
}