: This channels is implemented by Jenny Tigerholm.
:The steady state curves are collected from Winkelman 2005
:The time constat is from Gold 1996 and Safron 1996
: To plot this model run KA_Winkelman.m
NEURON {
SUFFIX kf
USEION k READ ek WRITE ik
RANGE gbar, ek, ik
RANGE tau_m, minf, hinf,tau_h,m,h, celsiusT
}
UNITS {
(S) = (siemens)
(mV) = (millivolts)
(mA) = (milliamp)
}
PARAMETER {
gbar (S/cm2)
lj=0 (mV):not known
vhm=-5.4 (mV)
vhh=-49.9 (mV)
km=16.4 (mV)
kh=4.6 (mV)
celsiusT
kvot_qt
shift=-15 (mV)
}
ASSIGNED {
v (mV) : NEURON provides this
ik (mA/cm2)
g (S/cm2)
tau_m (ms)
tau_h (ms)
minf
hinf
ek (mV)
}
STATE { h m }
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar*m*h
ik = g * (v-ek)
}
INITIAL {
: assume that equilibrium has been reached
m=(1/(1+exp(-(1/km)*(v-vhm+lj+shift))))^4
h=1/(1+exp((1/kh)*(v-vhh+lj+shift)))
}
DERIVATIVE states {
rates(v)
m' = (minf - m)/tau_m
h' = (hinf - h)/tau_h
}
FUNCTION rates(Vm (mV)) (/ms) {
minf=(1/(1+exp(-(1/km)*(v-vhm+lj+shift))))^4
hinf=1/(1+exp((1/kh)*(v-vhh+lj+shift)))
tau_m=(0.25+10.04*exp(-((v+24.67)^2)/(2*34.8^2)))
tau_h= (20+50*exp(-((v+40)^2)/(2*40^2)))
if (tau_h<5) {
tau_h=5
}
kvot_qt=1/((3.3^((celsiusT-23)/10)))
tau_m=tau_m*kvot_qt
tau_h=tau_h*kvot_qt
}