: This is mainly the 7.3 channel.
: It is an inactivation potassium current
: The inactivation long time constant is based on the article Passmore 2003.
: The steady state inactivation and short time constant is from Maingret 2008 (which is based on Passmore 2003)
: To plot the model run kv73_passmore_delmas.m
NEURON {
SUFFIX ks
USEION k READ ek WRITE ik
RANGE gbar, ena, ik,ek, celsiusT
}
UNITS {
(S) = (siemens)
(mV) = (millivolts)
(mA) = (milliamp)
}
PARAMETER {
gbar (S/cm2):= 0.2e-6 : =2e-9/(100e-12*1e8) (S/cm2) : 2(nS)/100(um)^2
celsiusT = 32
kvot_qt
lj=0
a
b
}
ASSIGNED {
v (mV) : NEURON provides this
ik (mA/cm2)
g (S/cm2)
tau_ns (ms)
tau_nf (ms)
ninfs
ninff
ek (mV)
}
STATE { ns nf }
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * (1/4*ns+nf*3/4)
ik = g * (v-ek)
}
INITIAL {
: assume that equilibrium has been reached
ns=1/(1+exp(-(v+30)/6(mV)))
nf=1/(1+exp(-(v+30)/6(mV)))
}
DERIVATIVE states {
rates(v)
ns' = (ninfs - ns)/tau_ns
nf' = (ninff - nf)/tau_nf
}
FUNCTION rates(Vm (mV)) (/ms) {
ninfs=1/(1+exp(-(Vm+30)/6(mV)))
ninff=1/(1+exp(-(Vm+30)/6(mV)))
tau_ns=1(ms)*(13*(Vm*1(/mV)+lj)+1000)
if (Vm<-60) {tau_ns=219}
a=0.00395*exp((Vm+30)/40(mV))
b=0.00395*exp(-(Vm+30)/20(mV))
tau_nf=1(ms)/(a+b)
kvot_qt=1/((3.3^((celsius-21)/10)))
tau_ns=tau_ns*kvot_qt
tau_nf=tau_nf*kvot_qt
}