: nattxs.mod is a transient ttx-sensitive Na+ current from
: Sheets et al 2007
NEURON {
SUFFIX nattxs
USEION na READ ena WRITE ina
RANGE gbar, ena, ina, celsiusT, Tshift
}
UNITS {
(S) = (siemens)
(mV) = (millivolts)
(mA) = (milliamp)
}
PARAMETER {
gbar = 0 (S/cm2):0.035135 (S/cm2)
enainit (mV)
kvot_qt
celsiusT
: second commented values are those used in Baker '05
A_am = 15.5 (/ms) : 17.235 (/ms) : A for alpha m
B_am = -5 (mV) : 7.58 (mV)
C_am = -12.08 (mV) : -11.47 (mV)
A_ah = 0.38685 (/ms) : 0.23688 (/ms) : A for alpha h
B_ah = 122.35 (mV) : 115 (mV)
C_ah = 15.29 (mV) : 46.33 (mV)
A_as = 0.00092 (/ms) : 0.23688 (/ms) : A for alpha h
B_as = 93.9 (mV) : 115 (mV)
C_as = 16.6 (mV) : 46.33 (mV)
A_bm = 35.2 (/ms) : 17.235 (/ms) : A for beta m
B_bm = 72.7 (mV) : 66.2 (mV)
C_bm = 16.7 (mV) : 19.8 (mV)
A_bh = 2.00283 (/ms) : 10.8 (/ms) : A for beta h
B_bh = 5.5266 (mV) : -11.8 (mV)
C_bh = -12.70195 (mV) : -11.998 (mV)
A_bs = -132.05 (/ms) : 10.8 (/ms) : A for beta h
B_bs = -384.9 (mV) : -11.8 (mV)
C_bs = 28.5 (mV) : -11.998 (mV)
shift=0 (mV) :10
Tshift=0 (mV)
}
ASSIGNED {
v (mV) : NEURON provides this
ina (mA/cm2)
g (S/cm2)
tau_h (ms)
tau_m (ms)
tau_s (ms)
minf
hinf
sinf
ena (mV)
}
STATE { m h s }
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * m^3 * h *s
ina = g * (v-ena)
}
INITIAL {
rates(v) : set tau_m, tau_h, hinf, minf
: assume that equilibrium has been reached
m = minf
h = hinf
s = sinf
}
DERIVATIVE states {
rates(v)
m' = (minf - m)/tau_m
h' = (hinf - h)/tau_h
s' = (sinf - s)/tau_s
}
FUNCTION alpham(Vm (mV)) (/ms) {
alpham=A_am/(1+exp((Vm+shift+B_am)/C_am))
}
FUNCTION alphah(Vm (mV)) (/ms) {
alphah=A_ah/(1+exp((Vm+shift+B_ah)/C_ah))
}
FUNCTION alphas(Vm (mV)) (/ms) {
alphas=0.00003+A_as/(1+exp((Vm+shift+B_as+Tshift)/C_as))
}
FUNCTION betam(Vm (mV)) (/ms) {
betam=A_bm/(1+exp((Vm+shift+B_bm)/C_bm))
}
FUNCTION betah(Vm (mV)) (/ms) {
betah=-0.00283+A_bh/(1+exp((Vm+shift+B_bh)/C_bh))
}
FUNCTION betas(Vm (mV)) (/ms) {
betas=132.05+A_bs/(1+exp((Vm+shift+B_bs+Tshift)/C_bs))
}
FUNCTION rates(Vm (mV)) (/ms) {
tau_m = 1.0 / (alpham(Vm) + betam(Vm))
minf = alpham(Vm) * tau_m
tau_h = 1.0 / (alphah(Vm) + betah(Vm))
hinf = alphah(Vm) * tau_h
tau_s = 1.0 / (alphas(Vm) + betas(Vm))
sinf = alphas(Vm) * tau_s
kvot_qt=1/((2.5^((celsiusT-21)/10)))
tau_m=tau_m*kvot_qt
tau_h=tau_h*kvot_qt
tau_s=tau_s*kvot_qt
}