: Author: David Catherall; Grill Lab; Duke University
: Created: November 2016
: Kds is the slowly inactivating delay current in Schild 1994
: Neuron Block creates mechanism
NEURON {
SUFFIX kds :Sets suffix of mechanism for insertion into models
USEION k READ ek WRITE ik :Lays out which NEURON variables will be used/modified by file
RANGE gbar, ek, ik, shiftkds :Allows variables to be modified in hoc and collected in vectors
}
: Defines Units different from NEURON base units
UNITS {
(S) = (siemens)
(mV) = (millivolts)
(mA) = (milliamp)
}
: Defines variables which will have a constant value throughout any given simulation run
PARAMETER {
gbar =0.000106103 (S/cm2) : (S/cm2) Channel Conductance
Q10kds=1.93 :All gating variables have the same constant
Q10TempA = 22.85 (degC) : Used to shift tau values based on temperature with equation : tau(T1)=tau(Q10TempA)*Q10^((Q10TempA-T1)/Q10TempB)
Q10TempB = 10 (degC)
shiftkds=3.0 (mV) : Shift factor present in C-fiber
: kds_x Variables
: Steady State Variables
V0p5x=-39.59 (mV) :As defined by Schild 1994, zinf=1.0/(1.0+exp((V-V0p5z)/(-S0p5z))
S0p5x=14.68(mV)
: Tau Variables
A_taux=5.0 (ms) :As defined by Schild 1994, tauz=A_tauz*exp(-B^2(V-Vpz)^2)+C
B_taux=0.022 (/mV)
C_taux=2.5 (ms)
Vpx=-65.0 (mV)
: kds_y Variables
: Steady State Variables
V0p5y=-48.0 (mV)
S0p5y=-7.0 (mV)
: Tau Variables
tau_y22=7500 (ms) :This is tau_y at 22 degC
}
: Defines variables which will be used or calculated throughout the simulation which may not be constant. Also included NEURON provided variables, like v, celsius, and ina
ASSIGNED {
:NEURON provided Variables
v (mV) : NEURON provides this
ik (mA/cm2)
celsius (degC)
ek (mV)
:Model Specific Variables
g (S/cm2)
tau_x (ms)
tau_y (ms)
xinf
yinf
}
: Defines state variables which will be calculated by numerical integration
STATE { x y1 }
: This block iterates the state variable calculations and uses those calculations to calculate currents
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * x^3 * y1
ik = g * (v-ek)
}
: Intializes State Variables
INITIAL {
rates(v) : set tau_x, yinf, xinf
: assume that equilibrium has been reached
x = xinf
y1 = yinf
}
:Defines Governing Equations for State Variables
DERIVATIVE states {
rates(v)
x' = (xinf - x)/tau_x
y1' = (yinf - y1)/tau_y
}
: Any other functions go here
:rates is a function which calculates the current values for tau and steady state equations based on voltage.
FUNCTION rates(Vm (mV)) (/ms) {
tau_x = A_taux*exp(-(B_taux)^2*(Vm-Vpx)^2)+C_taux
xinf = 1.0/(1.0+exp((Vm-V0p5x+shiftkds)/(-S0p5x)))
tau_y=tau_y22
yinf = 1.0/(1.0+exp((Vm-V0p5y+shiftkds)/(-S0p5y)))
:This scales the tau values based on temperature
tau_x=tau_x*Q10kds^((Q10TempA-celsius)/Q10TempB)
tau_y=tau_y*Q10kds^((Q10TempA-celsius)/Q10TempB)
}