: Author: David Catherall; Grill Lab; Duke University
: Created: January 2018
: Nas is the slower, TTX-insensitive current in Schild 1994
: Neuron Block creates mechanism
NEURON {
SUFFIX nas97mean :Sets suffix of mechanism for insertion into models
USEION na READ ena WRITE ina :Lays out which NEURON variables will be used/modified by file
RANGE gbar, ena, ina, shiftnas :Allows variables to be modified in hoc and collected in vectors
}
: Defines Units different from NEURON base units
UNITS {
(S) = (siemens)
(mV) = (millivolts)
(mA) = (milliamp)
}
: Defines variables which will have a constant value throughout any given simulation
PARAMETER {
gbar =0.001043349 (S/cm2) : (S/cm2) Channel Conductance This is the conductance from Schild 1994, not the conductance from Schild 1997
Q10nasm=2.30 : m Q10 Scale Factor
Q10nash=1.50 : h Q10 Scale Factor
Q10TempA = 22 (degC) : Used to shift tau values based on temperature with equation : tau(T1)=tau(Q10TempA)*Q10^((Q10TempA-T1)/Q10TempB)
Q10TempB = 10 (degC)
: nas_m Variables
: Steady State Variables
V0p5m=-11.29 (mV):As defined by Schild 1994, zinf=1.0/(1.0+exp((V0p5z-V)/S0p5z)
S0p5m=5.54 (mV)
: Tau Variables
A_taum=1.45 (ms) :As defined by Schild 1994, tauz=A_tauz*exp(-B^2(V-Vpz)^2)+C
B_taum=0.058 (/mV)
C_taum=0.26 (ms)
Vpm=-14.5 (mV)
: nas_h Variables
: Steady State Variables
V0p5h=-31.00 (mV)
S0p5h=-5.20 (mV)
: Tau Variables
A_tauh=10.75 (ms)
B_tauh=0.067 (/mV)
C_tauh=3.15 (ms)
Vph=-13.5 (mV)
}
: Defines variables which will be used or calculated throughout the simulation which may not be constant. Also included NEURON provided variables, like v, celsius, and ina
ASSIGNED {
:NEURON provided Variables
v (mV) : NEURON provides this
ina (mA/cm2)
celsius (degC)
ena (mV)
:Model Specific Variables
g (S/cm2)
tau_h (ms)
tau_m (ms)
minf
hinf
}
: Defines state variables which will be calculated by numerical integration
STATE { m h }
: This block iterates the state variable calculations and uses those calculations to calculate currents
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * m^3 * h
ina = g * (v-ena)
}
: Intializes State Variables
INITIAL {
rates(v) : set tau_m, tau_h, hinf, minf
: assume that equilibrium has been reached
m = minf
h = hinf
}
:Defines Governing Equations for State Variables
DERIVATIVE states {
rates(v)
m' = (minf - m)/tau_m
h' = (hinf - h)/tau_h
}
: Any other functions go here
:rates is a function which calculates the current values for tau and steady state equations based on voltage.
FUNCTION rates(Vm (mV)) (/ms) {
tau_m = A_taum*exp(-(B_taum)^2*(Vm-Vpm)^2)+C_taum
minf = 1.0/(1.0+exp((V0p5m-Vm)/S0p5m))
tau_h = A_tauh*exp(-(B_tauh)^2*(Vm-Vph)^2)+C_tauh
hinf = 1.0/(1.0+exp((V0p5h-Vm)/S0p5h))
:This scales the tau values based on temperature
tau_m=tau_m*Q10nasm^((Q10TempA-celsius)/Q10TempB)
tau_h=tau_h*Q10nash^((Q10TempA-celsius)/Q10TempB)
}