TITLE High threshold calcium current
COMMENT
-----------------------------------------------------------------------------
High threshold calcium current
------------------------------
- Ca++ current, L type channels
- Differential equations
- Model from:
Reuveni I; Friedman A; Amitai Y; Gutnick MJ.
Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells:
evidence for nonhomogeneous distribution of HVA Ca2+ channels in
dendrites.
Journal of Neuroscience, 1993 Nov, 13(11):4609-21.
- Experimental data for voltage-dependent activation:
Sayer RJ; Schwindt PC; Crill WE.
High- and low-threshold calcium currents in neurons acutely isolated from
rat sensorimotor cortex.
Neuroscience Letters, 1990 Dec 11, 120(2):175-8.
- Experimental data for voltage-dependent inactivation:
Dichter MA; Zona C.
Calcium currents in cultured rat cortical neurons.
Brain Research, 1989 Jul 17, 492(1-2):219-29.
- Calcium-dependent inactivation was not modeled; if interested, see:
Kay AR.
Inactivation kinetics of calcium current of acutely dissociated CA1
pyramidal cells of the mature guinea-pig hippocampus.
Journal of Physiology, 1991 Jun, 437:27-48.
- m2h kinetics from:
Kay AR; Wong RK.
Calcium current activation kinetics in isolated pyramidal neurones of the
Ca1 region of the mature guinea-pig hippocampus.
Journal of Physiology, 1987 Nov, 392:603-16.
- Reversal potential described by Nernst equation
- no temperature dependence included (rates correspond to 36 degC)
Alain Destexhe, Laval University, 1996
-----------------------------------------------------------------------------
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX ical
USEION ca READ eca WRITE ica
RANGE gcabar, alpha_m, beta_m, alpha_h, beta_h, m, h, carev
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER {
v (mV)
celsius = 36 (degC)
eca (mV)
cai = .00024 (mM) : initial [Ca]i = 200 nM
cao = 2 (mM) : [Ca]o = 2 mM
gcabar = 1e-4 (mho/cm2) : Max conductance
}
STATE {
m
h
}
ASSIGNED {
ica (mA/cm2) : current
carev (mV) : rev potential
alpha_m (/ms) : rate cst
beta_m (/ms)
alpha_h (/ms)
beta_h (/ms)
tadj
}
BREAKPOINT {
SOLVE states METHOD cnexp : see http://www.neuron.yale.edu/phpBB/viewtopic.php?f=28&t=592
carev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai)
ica = gcabar * m * m * h * (v-carev)
}
DERIVATIVE states {
evaluate_fct(v)
m' = alpha_m * (1-m) - beta_m * m
h' = alpha_h * (1-h) - beta_h * h
}
UNITSOFF
INITIAL {
evaluate_fct(v)
: m = alpha_m / (alpha_m + beta_m)
: h = alpha_h / (alpha_h + beta_h)
: tadj = 3 ^ ((celsius-36)/10)
}
PROCEDURE evaluate_fct(v(mV)) {
: rates at 36 degC
alpha_m = 0.055 * (-27-v) / (exp((-27-v)/3.8) - 1)
beta_m = 0.94 * exp((-75-v)/17)
alpha_h = 0.000457 * exp((-13-v)/50)
beta_h = 0.0065 / (exp((-15-v)/28) + 1)
}
UNITSON