function [Y] = HH14D(t, Ifunc, Area, Y0)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HH14D.m
% Written by Shusen Pu and Peter Thomas
% June, 2020
%%% Inputs
% t is vector of time values (ms)
% Ifunc is a function @(t)f(t) that returns stimulus value as a function of time (in ms)
% Area: Membrane Area (mu m^2)
%%% Outputs
% Y(:,1) : t
% Y(:,2) : V
% Y(:,3:10) : fractions in Na states m00-m13
% Y(:,11:15) : fraction in K states n0-n4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialize quantities needed to run solver
% time step size
dt = t(2)-t(1);
% Number of time steps
nt = length(t); % total
nt1 = nt-1; % at which to solve
% Initial Values
% from XPP code on the limit cycle
t0 = t(1);
% Initialize Output
Y = zeros(nt,15);
Y(1,:) = Y0;
Na_gates =Y0(3:10)';
K_gates=Y0(11:15)';
V0 =Y0(2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parameter Values
% Number of Channels
NNa = round(Area*60); % Na
NK = round(Area*18); % K
% Capacitance
C = 1; % muF /cm^2
% Na Current
gNa = 120; % mS/cm^2
ENa = 50; % mV
% K Current
gK = 36; % mS/cm^2
EK = -77; % mV
% Passive Leak
gL = 0.3; % mS / cm^2
EL = -54.4; % mV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine Which Noise Model and Do Some Necessary Setup
% Conductance Noise Model using Euler Maruyama (Thomas and Pu)
% Drift Na
ANa = @(V) ...
[ -3*alpham(V)-alphah(V) , betam(V) , 0 , 0 , betah(V) , 0 , 0 , 0 ;
3*alpham(V) ,-2*alpham(V)-betam(V)-alphah(V), 2*betam(V) , 0 , 0 , betah(V) , 0 , 0 ;
0 , 2*alpham(V) , -alpham(V)-2*betam(V)-alphah(V), 3*betam(V) , 0 , 0 , betah(V) , 0 ;
0 , 0 , alpham(V) , -3*betam(V)-alphah(V) , 0 , 0 , 0 , betah(V) ;
alphah(V) , 0 , 0 , 0 , -3*alpham(V) - betah(V) , betam(V) , 0 , 0 ;
0 , alphah(V) , 0 , 0 , 3*alpham(V) , -2*alpham(V)-betam(V)-betah(V) , 2*betam(V) , 0 ;
0 , 0 , alphah(V) , 0 , 0 , 2*alpham(V) , -alpham(V)-2*betam(V)-betah(V) , 3*betam(V) ;
0 , 0 , 0 , alphah(V) , 0 , 0 , alpham(V) , -3*betam(V)-betah(V)];
% Drift K
AK = @(V) ...
[-4*alphan(V), betan(V) , 0 , 0 , 0
4*alphan(V), -3*alphan(V)-betan(V), 2*betan(V) , 0, 0;
0, 3*alphan(V), -2*alphan(V)-2*betan(V), 3*betan(V), 0;
0, 0, 2*alphan(V), -alphan(V)-3*betan(V), 4*betan(V);
0, 0, 0, alphan(V), -4*betan(V)];
for i=2:nt
% Input Current
I = Ifunc(t(i-1));
% update the gates
Na_gates = Na_gates + dt*ANa(V0)*Na_gates;
K_gates = K_gates + dt*AK(V0) *K_gates;
% Compute Fraction of open channels
NaFraction= Na_gates(8);
KFraction=K_gates(5);
% Update Voltage
Vrhs = (-gNa*(NaFraction)*(V0 - ENa)-gK*(KFraction)*(V0 - EK) - gL*(V0-EL) + I)/C;
V = V0 + dt*Vrhs ; % VNoise is non-zero for Current Noise Model
% Save Outputs
Y(i,1) = t(i);
Y(i,2) = V;
Y(i,3:10) = Na_gates';
Y(i,11:15) = K_gates';
% Keep "old values" to use in next Euler time step
V0 = V;
end
end % End Function Definition
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% END OF SOLVER %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define functions used above
% subunit kinetics (Hodgkin and Huxley parameters, modified from XPP code by PJT OCt, 2018)
function out = alpham(V)
out = .1*(V+40)/(1-exp(-(V+40)/10));
%0.1 * (25-V)/ (exp((25-V)/10)-1);
end
function out = betam(V)
out = 4*exp(-(V+65)/18);
%4 * exp(-V/18);
end
function out = alphah(V)
out = .07*exp(-(V+65)/20);
%0.07 * exp(-V/20);
end
function out = betah(V)
out = 1/(1+exp(-(V+35)/10));
%1/ (exp((30-V)/10)+1);
end
function out = alphan(V)
out = .01*(V+55)/(1-exp(-(V+55)/10));
%0.01 * (10-V) / (exp((10-V)/10)-1);
end
function out = betan(V)
out = .125*exp(-(V+65)/80);
%0.125 * exp(-V/80);
end