from Purkinje_morpho_1 import Purkinje_Morpho_1
from Purkinje_morpho_1_number import number_ind_1
from neuron import h,gui
import numpy as np
import multiprocessing
import matplotlib.pyplot as plt
import random as rnd
#per disabilitare tutti i generatori random
seed = 123456
rnd.seed(seed)
h.use_mcell_ran4(1)
h.mcell_ran4_init(seed)
#fixed time step only
Fixed_step = h.CVode()
Fixed_step.active(0) #the model does not work with the variable time step!
#Instantiation of the cell template
spines_on = 1
cell = Purkinje_Morpho_1(spines_on)
stimdata = dict()
stimdata['timeglobal'] = 2000
##Neuron control menu
h.nrncontrolmenu()
#Voltage graph
#h('load_file("vm.ses")')
#this code discover the number of cores available in a CPU and activate the multisplit to use them all.
cpu = multiprocessing.cpu_count()
h.load_file("parcom.hoc")
p = h.ParallelComputeTool()
if spines_on == 0:
p.change_nthread(cpu,1)
print('spines_off')
else:
p.change_nthread(32,1)
print('spines_on')
p.multisplit(1)
print(cpu)
synapsesdata = dict()
#Excitation
#parallel fiber
synapsesdata['syninterval'] = 10
synapsesdata['synnumber'] = 10
synapsesdata['synstart'] = 1000
synapsesdata['synnoise'] = 0
#ascending axon
synapsesdata['synaainterval'] = 5
synapsesdata['synaanumber'] = 10
synapsesdata['synaastart'] = 1000
synapsesdata['synaanoise'] = 0
#Inhibition
#Stellate on parallel fiber and ascending axon
synapsesdata['synpfstlinterval'] = 7
synapsesdata['synpfstlnumber'] = 3
synapsesdata['synpfstlstart'] = 1000
synapsesdata['synpfstlnoise'] = 0
#new delay factor
synapsesdata['synpfdelay'] = 0
synapsesdata['synaadelay'] = 0
synapsesdata['synpfstldelay'] = 4
firstarg = synapsesdata['synnumber']
secondarg = synapsesdata['syninterval']
thirdarg = synapsesdata['synstart']
stim_xy = ([0, -0, -0, -0], #AA
[150.0, 175.0, -370.0, -258.0], #PF
[-0, -0, -0, -0], # AA_SC
[-0, -0, -0, -0]) #PF_SC
for i in range(len(stim_xy)):
if i == 1:
cell.spine_heads_x_y(stim_xy[i][0], stim_xy[i][1], stim_xy[i][2], stim_xy[i][3])
#Percentage of spines from 0 to 100%
percentage_spines = 100
cell.activator(1, 1, 0, percentage_spines, 0, 0, 0)
print('local_number_spine', len(cell.pfrand))
print('len PF_1', len(cell.PFdendminmax))
synapsesdata['npf'] = len(cell.PFdendminmax)
#PF bursts
spk_stim_pf = []
totalstim = int(stimdata['timeglobal']/ synapsesdata['synstart'])
for j in range(int(totalstim)):
spk_stim = h.NetStim()
spk_stim.interval=synapsesdata['syninterval']
spk_stim.number=synapsesdata['synnumber']
spk_stim.noise=synapsesdata['synnoise']
spk_stim.start=(synapsesdata['synstart'] * (totalstim - j)) + synapsesdata['synpfdelay']
spk_stim_pf.append(spk_stim)
spk_nc_pfsyn = []
j = j-1
print('len pf', len(cell.PFdendminmax))
for m in range(int(totalstim)):
spk_nc_pfsyn.append([h.NetCon(spk_stim_pf[m],PF.input,0,0.1,1) for PF in cell.PFdendminmax])
h.dt = 0.025
h.celsius = 32
h.tstop = stimdata['timeglobal']
h.v_init = -70
#initialization and run.
def initialize():
h.finitialize()
h.run()
initialize()
if spines_on == 1:
#save files
np.savetxt('06_vm_soma_spines.txt', np.column_stack((np.array(cell.time_vector), np.array(cell.vm_soma))), delimiter = ' ')
img = plt.plot(np.array(cell.time_vector), np.array(cell.vm_soma))
plt.xlabel("Time")
plt.ylabel("Amplitude")
plt.savefig('06_vm_soma_spines.eps')
plt.close()
quit()