%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% MLE for the QIF - with noise %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Given v and t, this program estimate the parameters a,b,c on the SDE
%
% dv = (a*v^2 + b*v + c)dt + sigma*dWt
%
% using the maximum likelihood estimator (MLE)
%
% v : voltage vector of length n
% dt : time vector of length n
%
function [a,b,c] = MLEquadratic(v,dt,areal,aknown)
n=length(v);
v0=v(1:(n-1));
v1=v(2:n);
x4=sum(v0.^4)*dt;
x3=sum(v0.^3)*dt;
x2=sum(v0.^2)*dt;
x1=sum(v0)*dt;
x0=dt*(n-1);
xx2=sum((v1-v0).*(v0.^2));
xx1=sum((v1-v0).*v0);
xx0=sum((v1-v0));
if strcmp(aknown,'Yes')
const1=xx1-areal*x3;
const2=xx0-areal*x2;
a=areal;
c=(x2*const2-x1*const1)/(x0*x2-x1*x1);
b=(const1-x1*c)/x2;
% Asystem = [x2 x1; x1 x0];
% bsystem = [xx1 - x3*areal;xx0 - x2*areal];
% Sol = linsolve(Asystem,bsystem);
%
% a=areal; b=Sol(1); c=Sol(2);
else
% Solve the system to obtain \hat(a), \hat(b) and \hat(c)
Asystem = [x4 x3 x2; x3 x2 x1; x2 x1 x0];
bsystem = [xx2;xx1;xx0];
% Sol = linsolve(Asystem,bsystem);
dA=det(Asystem);
% dA= x4*x2*x0-x4*x1^2+2*x3*x1*x2-x3^2*x0-x2^3; %det(Asystem);
Ainv=[x0*x2-x1^2,-(x0*x3-x1*x2),x1*x3-x2^2;
-(x0*x3-x1*x2),x0*x4-x2^2,-(x1*x4-x3*x2);
x1*x3-x2^2,-(x1*x4-x3*x2),x2*x4-x3^2]/dA;
Sol = Ainv*bsystem;
a=Sol(1); b=Sol(2); c=Sol(3);
end