% mkfig_Fig6D
%-----
% This file is associated with the following article, which has been provisionally accepted for publication in PLOS Computational Biology
% (initially submitted on May 11, 2016, and provisionally accepted on Sep 14, 2016):
% Authors: Ayaka Kato (1) & Kenji Morita (2)
% Affiliations:
% (1) Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
% (2) Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo Japan
% Title: Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation
% Short title: Dynamic Equilibrium in Reinforcement Learning
% Correspondence: Kenji Morita (morita@p.u-tokyo.ac.jp)
%-----
% to use the same random numbers as used in the simulations presented in the figures in the paper
load used_rand_twister_for_Fig6D
% parameters
num_sim = 20;
num_trial = 500;
RLtype = 'Q';
p_alpha = 0.5;
p_beta = 5;
p_gamma_set = [0:0.1:1];
decay_rate = 0;
DAdep_factor_set = [0 0.1 0.2 0.25];
DAdep_start_trial = 251;
% simulations
%rand('twister',sum(100*clock));
%Dsim.rand_twister = rand('twister');
Dsim.rand_twister = used_rand_twister_for_Fig6D;
rand('twister',Dsim.rand_twister);
for k1 = 1:length(p_gamma_set)
for k2 = 1:length(DAdep_factor_set)
Dsim.ntsptAllbin5{k1}{k2} = zeros(num_sim,100);
for k3 = 1:num_sim
fprintf('%d-%d-%d\n',k1,k2,k3);
Dsim.Out{k1}{k2}{k3} = RLdecayStayGo2(num_trial,RLtype,[p_alpha,p_beta,p_gamma_set(k1)],decay_rate,[DAdep_factor_set(k2),DAdep_start_trial]);
Dsim.ntsptAllbin5{k1}{k2}(k3,:) = mean(reshape(diff([0;Dsim.Out{k1}{k2}{k3}.goalsteps]),5,100),1);
end
Dsim.ntsptAllbin5_mean{k1}{k2} = mean(Dsim.ntsptAllbin5{k1}{k2},1);
Dsim.ntsptAllbin5_std{k1}{k2} = std(Dsim.ntsptAllbin5{k1}{k2},1,1);
end
end
Ddep_gamma = Dsim;
save Ddep_gamma Ddep_gamma
% plot
save_fig = 1;
load Ddep_gamma
Dsim = Ddep_gamma;
% chance level
chance_step7 = 0; % initialization
for k = 0:Inf
tmp = k * (nchoosek(6-1+k,k) / (2^k));
if 1/(2^k) == 0
break;
end
chance_step7 = chance_step7 + tmp;
end
chance_step7 = 7 + (chance_step7/(2^6));
% Fig. 6D
tmp = 0;
for k1 = [9] %1:length(p_gamma_set)
for k2 = [1 4] %1:length(DAdep_factor_set)
tmp = max(tmp, max(Dsim.ntsptAllbin5_mean{k1}{k2}+Dsim.ntsptAllbin5_std{k1}{k2}/sqrt(num_sim)));
end
end
YMax = ceil(tmp);
YMax = 15;
for k1 = [9] %1:length(p_gamma_set)
for k2 = [1 4] %1:length(DAdep_factor_set)
F = figure;
A = axes;
hold on;
P = plot([0 100],[7,7],'k:');
P = plot([0 100],chance_step7*[1,1],'k:');
P = plot(50*[1 1],[6 YMax],'k-.');
P = plot([1:100]-0.5,Dsim.ntsptAllbin5_mean{k1}{k2},'k');
P = plot([1:100]-0.5,Dsim.ntsptAllbin5_mean{k1}{k2}+Dsim.ntsptAllbin5_std{k1}{k2}/sqrt(num_sim),'k--');
P = plot([1:100]-0.5,Dsim.ntsptAllbin5_mean{k1}{k2}-Dsim.ntsptAllbin5_std{k1}{k2}/sqrt(num_sim),'k--');
axis([0 100 6 YMax]);
set(A,'Box','off');
%set(A,'PlotBoxAspectRatio',[1 1 1]);
set(A,'FontName','Ariel','FontSize',20);
set(A,'XTick',[0:10:100],'XTickLabel',[0:50:500]);
set(A,'YTick',[6:1:YMax],'YTickLabel',[6:1:YMax]);
if save_fig
print(F,'-depsc',['Fig6D_' num2str(k1) '_' num2str(k2)]);
end
end
end