#================================================================================
# Computer simulation 1 - with weight-dependent RM STDP rule
# from Legenstein., R., Pecevski., D. and Maass., W., A Learning Theory
# for Reward-Modulated Spike-Timing-Dependent Plasticity with Application
# to Biofeedback
#
# Author: Dejan Pecevski, dejan@igi.tugraz.at
#
# Date: February 2008
#
#================================================================================
import sys
import os
from pypcsim import *
from pypcsimplus import *
from pypcsimplus.common import *
sys.path.append('../packages/reward_gen/build')
from pyreward_gen import *
from numpy import *
import random, getopt
from datetime import datetime
from math import *
from tables import *
from mpi4py import MPI
import operator
import numpy
from matplotlib.mlab import find as find
def experiment(exp_run_name, expname = None, params={}):
print "experiment run name: ", exp_run_name
p = Parameters()
script_container = ScriptContainer()
script_container.loadScripts([sys.argv[0], 'figure_draft_journal.py'])
###################################################################
# Global parameter values
###################################################################
p.nNeurons = 4000 # number of neurons
p.minDelay = 1e-3 # minimum synapse delay [sec]
p.maxDelay = 1
p.ConnP = 0.02 # connectivity probability
p.Frac_EXC = 0.8 # fraction of excitatory neurons
p.Tsim = 1200 # duration of the simulation [sec]
p.DTsim = 1e-4 # simulation time step [sec]
p.nSynRecordedNeurons = 50 # number of neurons to record the synapse weights from
p.Frac_OU = 0.5
p.Frac_OU_Inh = 0.5
p.ouConnP = 0.4 * p.ConnP
p.lowOUScale = 0.2
p.firingRate = 5
p.WExcLowOUScale = 1.0
p.WLowOUScale = 1.0
# weight scaling parameters
p.Wscale = 0.8
p.WExcScale = 1.0
p.WInhScale = 1.4
p.WHighOUScale = 1.0
# neuron parameters
p.Rm = 1e8
p.Cm = 30e-11
p.Vthresh=-59.0e-3
p.Vresting=-70e-3
p.Vreset=-70e-3
p.Trefract=5e-3
p.Vinit=-70e-3
# other synapse parameters
p.synTau = 5e-3
p.synDelay = 1e-3
p.Delay_Heter = 0.0
p.ErevExc = 0e-3
p.ErevInh = -75e-3
p.reinforced_nrn_perm_idx = 806
p.UDF_Heter = 0.5
# Dynamic Synapse parameters
p.createNodes([ 'EE', 'EI', 'IE', 'II' ])
p.EE.U = 0.5
p.EE.D = 1.1
p.EE.F = 0.02
p.EE.synDelay = 1e-3
p.EI.U = 0.25
p.EI.D = 0.7
p.EI.F = 0.02
p.IE.U = 0.05
p.IE.D = 0.125
p.IE.F = 1.2
p.II.U = 0.32
p.II.D = 0.144
p.II.F = 0.06
p.EE.Cscale = 1.0
p.EI.Cscale = 1.0
p.IE.Cscale = 1.2
p.II.Cscale = 0.8
p.pyRandomSeed = 232511
p.simulationRNGSeed = 684342
p.constructionRNGSeed = 15233571
p.numpyRndSeed = 210592831
# STDP parameters
p.alpha = 1.05
p.MuPos = 0.4
p.MuNeg = 1.0
p.stdpA = 0.004
p.stdpTaupos = 20e-3
p.stdpTauneg = 20e-3
p.alpha_M = 0.11
# eligibility trace parameters
p.DAStdpRate = 0.3
p.DATraceTau = 0.4
p.DATraceShape = 'alpha'
p.rewardDuration = 1
# reward parameters
p.rewardDelay = 0.5 # <<-----------not important any more
p.posAlphaDelay = 0.2
p.rateTau = 0.2
p.negAlphaDelay = 0.2
p.negTau = 1
p.rewardScale = 0.005
p.Inoise = 0e-10
p.idleT = 1.5
p.override(params)
p.Tinp = p.Tsim # length of the initial stimulus [sec]
p.synTauInh = p.synTau
tau_m = p.Cm * p.Rm
tau_s = p.synTau
p.Wexc = ((p.Vthresh - p.Vinit) * p.WExcScale * p.Wscale)/ ((p.ErevExc - p.Vinit) * p.Rm * tau_s / (tau_m - tau_s) * ((tau_s / tau_m) ** (tau_s / (tau_m - tau_s)) - (tau_s / tau_m) ** (tau_m / (tau_m - tau_s))))
tau_s = p.synTauInh
p.Winh = ((p.Vthresh - p.Vinit) * p.WInhScale * p.Wscale)/ ((p.Vinit - p.ErevInh) * p.Rm * tau_s / (tau_m - tau_s) * ((tau_s / tau_m) ** (tau_s / (tau_m - tau_s)) - (tau_s / tau_m) ** (tau_m / (tau_m - tau_s))))
p.WexcHighOU = p.Wexc * p.WHighOUScale
p.WinhHighOU = p.Winh * p.WHighOUScale
p.WexcLowOU = p.Wexc * p.WLowOUScale * p.WExcLowOUScale
p.WinhLowOU = p.Winh * p.WLowOUScale
print "average number of excitatory synapses = ", p.ConnP * p.nNeurons * p.Frac_EXC
print "Wexc = ", p.Wexc, "Winh=", p.Winh
p.W0_stdp = p.WexcLowOU * ( p.alpha_M ** (1.0/ (1 - p.MuPos)) )
p.stdpApos = p.stdpA * ( p.W0_stdp ** (1 - p.MuPos) )
p.stdpAneg = - p.stdpA * p.alpha_M
p.nExcNeurons = int(p.nNeurons * p.Frac_EXC)
p.nInhNeurons = p.nNeurons - p.nExcNeurons
p.ouExcNeurons = int(p.nExcNeurons * p.Frac_OU)
p.ouInhNeurons = int(p.nInhNeurons * p.Frac_OU_Inh)
tstart=datetime.today()
# init seeds
random.seed(datetime.today().microsecond)
random.seed(p.pyRandomSeed)
numpy.random.seed(p.numpyRndSeed)
p.samplingTime = int(p.Tsim / (200 * p.DTsim)) # sampling time for the recorded analog values
def sub_time(t1, t2):
return (t1 - t2).seconds+1e-6*(t1-t2).microseconds;
###################################################################
# Create an empty network
###################################################################
sp = SimParameter(dt=Time.sec(p.DTsim) , minDelay = Time.sec(p.minDelay), maxDelay = Time.sec(p.maxDelay), simulationRNGSeed = p.simulationRNGSeed, constructionRNGSeed = p.constructionRNGSeed);
net = DistributedSingleThreadNetwork(sp)
r = Recordings(net)
###################################################################
# Create the neurons and set their parameters
###################################################################
da_lifmodel = DARecvCbLifNeuron(Cm=p.Cm, Rm=p.Rm, Vthresh=p.Vthresh, Vresting=p.Vresting, Vreset=p.Vreset, Trefract=p.Trefract, Vinit=p.Vinit, Inoise = p.Inoise);
exc_nrn_popul = SimObjectPopulation(net, da_lifmodel, int(p.nNeurons * p.Frac_EXC));
inh_nrn_popul = SimObjectPopulation(net, da_lifmodel, p.nNeurons - exc_nrn_popul.size());
all_nrn_popul = SimObjectPopulation(net, list(exc_nrn_popul.idVector()) + list(inh_nrn_popul.idVector()));
#--------------------------------------------------------------------------------------------------
the_permutation = numpy.random.permutation(p.nExcNeurons)
r.exc_ou_nrn_idxs = the_permutation[:p.ouExcNeurons]
r.exc_other_nrn_idxs = the_permutation[p.ouExcNeurons:]
p.reinforced_nrn_idx = r.exc_other_nrn_idxs[p.reinforced_nrn_perm_idx]
exc_ou_nrn_ids = []
for idx in r.exc_ou_nrn_idxs:
exc_ou_nrn_ids.append(exc_nrn_popul[idx])
exc_ou_nrn_popul = SimObjectPopulation(net, exc_ou_nrn_ids)
exc_other_nrn_ids = []
for idx in r.exc_other_nrn_idxs:
exc_other_nrn_ids.append(exc_nrn_popul[idx])
exc_other_nrn_popul = SimObjectPopulation(net, exc_other_nrn_ids)
assert( p.reinforced_nrn_idx not in r.exc_ou_nrn_idxs )
the_permutation = numpy.random.permutation(p.nInhNeurons)
inh_ou_nrn_idxs = the_permutation[:p.ouInhNeurons]
inh_other_nrn_idxs = the_permutation[p.ouInhNeurons:]
inh_ou_nrn_ids = []
for idx in inh_ou_nrn_idxs:
inh_ou_nrn_ids.append(inh_nrn_popul[idx])
inh_other_nrn_ids = []
for idx in inh_other_nrn_idxs:
inh_other_nrn_ids.append(inh_nrn_popul[idx])
inh_ou_nrn_popul = SimObjectPopulation(net, inh_ou_nrn_ids)
inh_other_nrn_popul = SimObjectPopulation(net, inh_other_nrn_ids)
ou_nrn_popul = SimObjectPopulation(net, exc_ou_nrn_ids + inh_ou_nrn_ids)
other_nrn_popul = SimObjectPopulation(net, exc_other_nrn_ids + inh_other_nrn_ids)
net.mount(OUNoiseSynapse(0.012e-6, 0.003e-6, 2.7e-3, 0.0), ou_nrn_popul.idVector())
net.mount(OUNoiseSynapse(0.057e-6, 0.0066e-6, 10.5e-3,-75e-3), ou_nrn_popul.idVector())
net.mount(OUNoiseSynapse(0.012e-6 * p.lowOUScale, 0.003e-6 * p.lowOUScale, 2.7e-3, 0.0), other_nrn_popul.idVector())
net.mount(OUNoiseSynapse(0.057e-6 * p.lowOUScale, 0.0066e-6 * p.lowOUScale, 10.5e-3,-75e-3), other_nrn_popul.idVector())
print "Created", exc_nrn_popul.size(), "exc and", inh_nrn_popul.size(), "inh neurons";
if p.DATraceShape == 'exp':
DATraceResponse = ExponentialDecaySpikeResponse(p.DATraceTau)
else:
DATraceResponse = AlphaFunctionSpikeResponse(p.DATraceTau)
###################################################################
# Create synaptic connections
###################################################################
print 'Making synaptic connections:'
t0=datetime.today()
EE, EI, IE, II = 0, 1, 2, 3
SynFactory = [EE, EI, IE, II]
SynFactory[EE] = SimObjectVariationFactory(DAModStdpDynamicCondExpSynapse(Winit= p.WexcLowOU,
Erev = p.ErevExc,
tau = p.synTau,
delay = p.synDelay,
U = p.EE.U,
D = p.EE.D,
F = p.EE.F,
activeDASTDP = True,
Apos = p.stdpApos,
Aneg = p.stdpAneg,
taupos = p.stdpTaupos,
tauneg = p.stdpTauneg,
mupos = p.MuPos,
muneg = p.MuNeg,
Wex = 2.0 * p.WexcLowOU,
useFroemkeDanSTDP = False,
useMorrisonSTDP = True,
DAStdpRate = p.DAStdpRate,
daTraceResponse = DATraceResponse))
SynFactory[EE].set("U", BndNormalDistribution(p.EE.U, p.UDF_Heter, 0.05, 0.95))
SynFactory[EE].set("D", BndNormalDistribution(p.EE.D, p.UDF_Heter, 5e-3, 5))
SynFactory[EE].set("F", BndNormalDistribution(p.EE.F, p.UDF_Heter, 5e-3, 5))
SynFactory[EI] = SimObjectVariationFactory(DynamicCondExpSynapse(W = p.WexcLowOU,
Erev = p.ErevExc,
tau = p.synTau,
delay = p.synDelay,
U = p.EI.U,
D = p.EI.D,
F = p.EI.F))
SynFactory[EI].set("U", BndNormalDistribution(p.EE.U, p.UDF_Heter, 0.05, 0.95))
SynFactory[EI].set("D", BndNormalDistribution(p.EE.D, p.UDF_Heter, 5e-3, 5))
SynFactory[EI].set("F", BndNormalDistribution(p.EE.F, p.UDF_Heter, 5e-3, 5))
SynFactory[IE] = SimObjectVariationFactory(DynamicCondExpSynapse(W= p.WinhLowOU,
Erev = p.ErevInh,
tau = p.synTauInh,
delay = p.synDelay,
U = p.IE.U,
D = p.IE.D,
F = p.IE.F))
SynFactory[IE].set("U", BndNormalDistribution(p.EE.U, p.UDF_Heter, 0.05, 0.95))
SynFactory[IE].set("D", BndNormalDistribution(p.EE.D, p.UDF_Heter, 5e-3, 5))
SynFactory[IE].set("F", BndNormalDistribution(p.EE.F, p.UDF_Heter, 5e-3, 5))
SynFactory[II] = SimObjectVariationFactory(DynamicCondExpSynapse(W = p.WinhLowOU,
Erev = p.ErevInh,
tau = p.synTauInh,
delay = p.synDelay,
U = p.II.U,
D = p.II.D,
F = p.II.F))
SynFactory[II].set("U", BndNormalDistribution(p.EE.U, p.UDF_Heter, 0.05, 0.95))
SynFactory[II].set("D", BndNormalDistribution(p.EE.D, p.UDF_Heter, 5e-3, 5))
SynFactory[II].set("F", BndNormalDistribution(p.EE.F, p.UDF_Heter, 5e-3, 5))
syn_project = [EE, EI, IE, II]
syn_project[EE] = ConnectionsProjection(exc_nrn_popul, exc_other_nrn_popul,
SynFactory[EE],
RandomConnections(conn_prob = p.ConnP * p.EE.Cscale),
SimpleAllToAllWiringMethod(net),
True, True)
syn_project[EI] = ConnectionsProjection(exc_nrn_popul, inh_other_nrn_popul,
SynFactory[EI],
RandomConnections(conn_prob = p.ConnP * p.EI.Cscale),
SimpleAllToAllWiringMethod(net),
True, True)
syn_project[IE] = ConnectionsProjection(inh_nrn_popul, exc_other_nrn_popul,
SynFactory[IE],
RandomConnections(conn_prob = p.ConnP * p.IE.Cscale))
syn_project[II] = ConnectionsProjection(inh_nrn_popul, inh_other_nrn_popul,
SynFactory[II],
RandomConnections(conn_prob = p.ConnP * p.II.Cscale))
# project to OU neurons with smaller connection probability
OUSynFactory = [EE, EI, IE, II]
OUSynFactory[EE] = SimObjectVariationFactory(DAModStdpDynamicCondExpSynapse(Winit= p.WexcHighOU,
Erev = p.ErevExc,
tau = p.synTau,
delay = p.synDelay,
U = p.EE.U,
D = p.EE.D,
F = p.EE.F,
activeDASTDP = True,
Apos = p.stdpApos,
Aneg = p.stdpAneg,
taupos = p.stdpTaupos,
tauneg = p.stdpTauneg,
mupos = p.MuPos,
muneg = p.MuNeg,
Wex = 2.0 * p.WexcHighOU,
useFroemkeDanSTDP = False,
useMorrisonSTDP = True,
DAStdpRate = p.DAStdpRate,
daTraceResponse = DATraceResponse))
SynFactory[EE].set("U", BndNormalDistribution(p.EE.U, p.UDF_Heter, 0.05, 0.95))
SynFactory[EE].set("D", BndNormalDistribution(p.EE.D, p.UDF_Heter, 5e-3, 5))
SynFactory[EE].set("F", BndNormalDistribution(p.EE.F, p.UDF_Heter, 5e-3, 5))
OUSynFactory[EI] = SimObjectVariationFactory(DynamicCondExpSynapse(W = p.WexcHighOU,
Erev = p.ErevExc,
tau = p.synTau,
delay = p.synDelay,
U = p.EI.U,
D = p.EI.D,
F = p.EI.F))
SynFactory[EI].set("U", BndNormalDistribution(p.EE.U, p.UDF_Heter, 0.05, 0.95))
SynFactory[EI].set("D", BndNormalDistribution(p.EE.D, p.UDF_Heter, 5e-3, 5))
SynFactory[EI].set("F", BndNormalDistribution(p.EE.F, p.UDF_Heter, 5e-3, 5))
OUSynFactory[IE] = SimObjectVariationFactory(DynamicCondExpSynapse(W= p.WinhHighOU,
Erev = p.ErevInh,
tau = p.synTauInh,
delay = p.synDelay,
U = p.IE.U,
D = p.IE.D,
F = p.IE.F))
SynFactory[IE].set("U", BndNormalDistribution(p.EE.U, p.UDF_Heter, 0.05, 0.95))
SynFactory[IE].set("D", BndNormalDistribution(p.EE.D, p.UDF_Heter, 5e-3, 5))
SynFactory[IE].set("F", BndNormalDistribution(p.EE.F, p.UDF_Heter, 5e-3, 5))
OUSynFactory[II] = SimObjectVariationFactory(DynamicCondExpSynapse(W = p.WinhHighOU,
Erev = p.ErevInh,
tau = p.synTauInh,
delay = p.synDelay,
U = p.II.U,
D = p.II.D,
F = p.II.F))
SynFactory[II].set("U", BndNormalDistribution(p.EE.U, p.UDF_Heter, 0.05, 0.95))
SynFactory[II].set("D", BndNormalDistribution(p.EE.D, p.UDF_Heter, 5e-3, 5))
SynFactory[II].set("F", BndNormalDistribution(p.EE.F, p.UDF_Heter, 5e-3, 5))
ou_syn_project = [EE,EI,IE,II]
ou_syn_project[EE] = ConnectionsProjection(exc_nrn_popul, exc_ou_nrn_popul,
OUSynFactory[EE],
RandomConnections(conn_prob = p.ouConnP * p.EE.Cscale),
SimpleAllToAllWiringMethod(net),
True, True)
ou_syn_project[EI] = ConnectionsProjection(exc_nrn_popul, inh_ou_nrn_popul,
OUSynFactory[EI],
RandomConnections(conn_prob = p.ouConnP * p.EI.Cscale),
SimpleAllToAllWiringMethod(net),
True, True)
ou_syn_project[IE] = ConnectionsProjection(inh_nrn_popul, exc_ou_nrn_popul,
OUSynFactory[IE],
RandomConnections(conn_prob = p.ouConnP * p.IE.Cscale))
ou_syn_project[II] = ConnectionsProjection(inh_nrn_popul, inh_ou_nrn_popul,
OUSynFactory[II],
RandomConnections(conn_prob = p.ouConnP * p.II.Cscale))
t1= datetime.today();
print 'Created', int(syn_project[EE].size() + syn_project[EI].size() + syn_project[IE].size() + syn_project[II].size()), 'conductance based synapses in', (t1 - t0).seconds, 'seconds'
###########################################################
# Create the reward generator
###########################################################
reward_gen_id = net.add(RewardGenerator2(), SimEngine.ID(0, 0))
pos_rate_syn = net.create(StaticCurrAlphaSynapse(p.rewardScale/(p.rateTau * exp(1.0)), p.rateTau, delay = 0), SimEngine.ID(0, 0))
neg_rate_syn = net.create(StaticCurrAlphaSynapse(- p.rewardScale/(p.negTau * exp(1.0)), p.negTau, delay = 0), SimEngine.ID(0, 0))
for i in range(all_nrn_popul.size()):
net.connect(reward_gen_id, 0, all_nrn_popul[i], "DA_concentration", Time.ms(1))
net.connect(pos_rate_syn, 0, reward_gen_id, 1, Time.ms(0))
net.connect(neg_rate_syn, 0, reward_gen_id, 2, Time.ms(0))
net.connect(all_nrn_popul[p.reinforced_nrn_idx], 0, pos_rate_syn, 0, Time.sec(p.posAlphaDelay))
net.connect(all_nrn_popul[p.reinforced_nrn_idx], 0, neg_rate_syn, 0, Time.sec(p.negAlphaDelay))
r.rate_syn = net.record(pos_rate_syn, AnalogRecorder(p.samplingTime))
# ********************************************************************************************
# SPIKE RECORDINGS
r.spikes = all_nrn_popul.record(SpikeTimeRecorder())
#************************************************************************
# GROUPS OF SYNAPSES
# split circuit synapses into reinforced and non-reinforced group
r.reinforced_ou_nrn_syns, r.reinforced_ou_nrn_syns_idx, other_ou_nrn_syns = collect_synids_nrn(syn_project[EE],
exc_ou_nrn_popul, exc_nrn_popul, p.reinforced_nrn_idx)
r.reinforced_other_nrn_syns, r.reinforced_other_nrn_syns_idx, other_other_nrn_syns = collect_synids_nrn(syn_project[EE],
exc_other_nrn_popul, exc_nrn_popul, p.reinforced_nrn_idx)
syn_record_nrn_idxs = numpy.random.permutation(p.nNeurons)[:p.nSynRecordedNeurons]
syn_record_nrn_idxs = syn_record_nrn_idxs + (syn_record_nrn_idxs >= p.reinforced_nrn_idx)
r.recorded_other_not_ou_circ_syns, recorded_other_not_ou_circ_syns_idxs, the_rest_circ_syns = collect_synids_nrn(syn_project[EE],
all_nrn_popul, all_nrn_popul, syn_record_nrn_idxs)
r.recorded_other_ou_circ_syns, recorded_other_ou_circ_syns_idxs, the_rest_circ_syns = collect_synids_nrn(ou_syn_project[EE], all_nrn_popul, all_nrn_popul, syn_record_nrn_idxs)
r.recorded_other_circ_syns = r.recorded_other_ou_circ_syns + r.recorded_other_not_ou_circ_syns
r.exc_ou_afferents_reinforced_nrn = collect_afferents(syn_project[EE], exc_ou_nrn_popul, exc_nrn_popul, p.reinforced_nrn_idx)
r.exc_other_afferents_reinforced_nrn = collect_afferents(syn_project[EE], exc_other_nrn_popul, exc_nrn_popul, p.reinforced_nrn_idx)
r.exc_afferents_reinforced_nrn = r.exc_ou_afferents_reinforced_nrn + r.exc_other_afferents_reinforced_nrn
#*************************************************************************************
# WEIGHTS RECORDINGS
# Record the average and std of weights of the non-reinforced stdp synapses and of the reinforced stdp synapses
r.reinforced_ou_weights = SimObjectPopulation(net, r.reinforced_ou_nrn_syns).record(AnalogRecorder(p.samplingTime), "W")
r.reinforced_other_weights = SimObjectPopulation(net, r.reinforced_other_nrn_syns).record(AnalogRecorder(p.samplingTime), "W")
r.other_circ_not_ou_weights = SimObjectPopulation(net, r.recorded_other_not_ou_circ_syns).record(AnalogRecorder(p.samplingTime), "W")
r.other_circ_ou_weights = SimObjectPopulation(net, r.recorded_other_ou_circ_syns).record(AnalogRecorder(p.samplingTime), "W")
###################################################
# Number of synapses report
###################################################
syntype_str = ['EE','EI','IE','II']
p.numSyn = [EE,EI,IE,II]
for i in [EE,EI,IE,II]:
len_project = syn_project[i].size()
len_ou_project = ou_syn_project[i].size()
print "number of %s synapses lowOU:" % (syntype_str[i],), len_project
print "number of %s synapses highOU" % (syntype_str[i],), len_ou_project
print "total number of %s synapses " % (syntype_str[i],), len_project + len_ou_project
p.numSyn[i] = len_project + len_ou_project
print "total number of excitatory synapses : ", syn_project[EE].size() + syn_project[EI].size() + ou_syn_project[EE].size() + ou_syn_project[EI].size()
p.totalNumExcSyn = syn_project[EE].size() + syn_project[EI].size() + ou_syn_project[EE].size() + syn_project[EI].size()
print "total number of synapses : ", syn_project[EE].size() + syn_project[EI].size() + syn_project[IE].size() + syn_project[II].size() + ou_syn_project[EE].size() + ou_syn_project[EI].size() + ou_syn_project[IE].size() + ou_syn_project[II].size()
p.totalNumExcSyn = syn_project[EE].size() + syn_project[EI].size() + syn_project[IE].size() + syn_project[II].size() + ou_syn_project[EE].size() + ou_syn_project[EI].size() + ou_syn_project[IE].size() + ou_syn_project[II].size()
def set_learning(proj_list, new_state):
for proj in proj_list:
for i in range(proj.size()):
if proj.object(i) != None:
proj.object(i).activeDASTDP = new_state
############################################################
# SIMULATE THE CIRCUIT
############################################################
print 'Running simulation:';
t0=datetime.today()
net.add(SimProgressBar(Time.sec(p.Tsim)), SimEngine.ID(0, 0))
print "Simulation start: " , datetime.today().strftime('%x %X')
net.reset();
set_learning([syn_project[EE], ou_syn_project[EE]], False)
net.advance(int(p.idleT/p.DTsim))
set_learning([syn_project[EE], ou_syn_project[EE]], True)
net.advance(int((p.Tsim - p.idleT)/p.DTsim))
t1=datetime.today()
print 'Done.', (t1-t0).seconds, 'sec CPU time for', p.Tsim*1000, 'ms simulation time';
print '==> ', (t1-tstart).seconds, 'seconds total'
p.simDuration = (t1-t0).seconds
p.numProcesses = net.mpi_size()
print "Saving results..."
exp_run_name = 'noname'
if len(sys.argv) > 1:
exp_run_name = sys.argv[1]
if expname is None:
expname = sys.argv[0]
f = open_experiment_h5file(expname, exp_run_name)
p.saveInH5File(f)
r.saveInOneH5File(f)
script_container.storeScripts(f)
if not f is None:
print "closing file"
f.close();
print "Done."
if len(sys.argv) > 1:
experiment(sys.argv[1], None, {})
else:
model_params["Tsim"] = 12.0
experiment('noname', None, model_params)