from pypcsimplus import *
import pypcsimplus as pcsim
from numpy import *
import matplotlib
matplotlib.use('Agg')
import sys
sys.path.append('../packages')
from pyV1.inputs import jitteredtemplate as STempl
def rew_kernel(x):
Apos = 1
Aneg = -1
tau_down = 50e-3
tau_up = 5e-3
if x > 0:
return Apos * (exp( -x/tau_down ) - exp( - x/tau_up ) )
elif x < 0:
return Aneg * ( exp( x/tau_down ) - exp( x/tau_up ) )
class TemplateInputModelKernelRwd(pcsim.Model):
def defaultParameters(self):
p = self.params
p.nInputChannels = 200
p.templDuration = 500e-3
p.nTemplates = 2
p.jitter = 0e-3
p.templRate = 3
p.numSpikesPerChannel = 1
p.targetTemplate = 0
p.initT = 50e-3
p.rewardT = 50e-3
p.rewardDuration = 1000e-3
p.synTauExc = 3e-3
p.delay = 1e-3
p.Wscale = 0.02
p.WExcScale = 1.0
p.WInhScale = 1.0
p.connP = 0.2
p.W_Heter = 1.0
p.rewardDelay = 0.3
p.rewTau = 100e-3
p.rewPulseScale = 1e-4
p.spikeGeneration = 'fixedSpikesPerChannel'
return p
def derivedParameters(self):
p = self.params
ep = self.expParams
dm = self.depModels
m = self.elements
net = self.net
p.posRewLevels = [0,1,0]
p.posRewDurations = [p.initT, p.rewardT + p.rewardDuration, ep.trialT ]
p.negRewLevels = [0,-1.0, 0]
p.negRewDurations = [p.initT, p.rewardT + p.rewardDuration, ep.trialT ]
def reset(self, epoch):
m = self.elements
p = self.params
ep = self.expParams
net = self.net
m.currTemplate = (m.currTemplate+1) % p.nTemplates
stim = m.spiketemplate.generate([m.currTemplate])
for ch in stim.channel:
ch.data = array(ch.data) + p.initT + epoch * ep.trialT
for i in range(m.input_channel_popul.size()):
if m.input_channel_popul.object(i):
m.input_channel_popul.object(i).setSpikes(stim.channel[i].data)
m.input_channel_popul.object(i).reset(ep.DTsim, epoch * ep.trialT)
if m.currTemplate == p.targetTemplate:
net.object(m.rewardgen).W = abs(net.object(m.rewardgen).W)
else:
net.object(m.rewardgen).W = - abs(net.object(m.rewardgen).W)
if (net.object(m.rewardgen)):
net.object(m.rewardgen).reset(ep.DTsim)
m.chosenTemplates.append(m.currTemplate)
def generate(self):
p = self.params
net = self.net
m = self.elements
dm = self.depModels
self.derivedParameters()
# connect the input neurons to the liquid
m.input_channel_popul = SimObjectPopulation(net, SpikingInputNeuron(), p.nInputChannels)
m.templ_spikes = []
for tmpl_i in range(p.nTemplates):
m.templ_spikes.append([ [] for i in range(p.nInputChannels) ])
for ch_i in range(p.nInputChannels):
for n in range(p.numSpikesPerChannel):
m.templ_spikes[tmpl_i][ch_i].append(random.uniform(0, p.templDuration))
for tmpl_i in range(p.nTemplates):
for ch_i in range(p.nInputChannels):
m.templ_spikes[tmpl_i][ch_i].sort()
m.spiketemplate = STempl.JitteredTemplate(Tstim=p.templDuration, nChannels=p.nInputChannels, nTemplates=[p.nTemplates], jitter=p.jitter, freq=[p.templRate])
if p.spikeGeneration == "fixedSpikesPerChannel":
for tmpl_i in range(p.nTemplates):
for ch_i in range(p.nInputChannels):
m.spiketemplate.segment[0].template[tmpl_i].st[ch_i] = m.templ_spikes[tmpl_i][ch_i]
m.currTemplate = -1
m.chosenTemplates = []
m.rewardgen = net.create( StaticCurrAlphaSynapse(1/(p.rewTau*exp(1)) * p.rewPulseScale, tau = p.rewTau, delay = 0), SimEngine.ID(0,0) )
return self.elements
def connectReadout(self, readout):
net = self.net
p = self.params
m = self.elements
readout_nrn = readout.elements.learning_nrn
net.connect(m.rewardgen, readout.elements.learning_nrn, Time.sec(p.rewardDelay))
net.connect(readout.elements.learning_nrn, m.rewardgen, Time.sec(0))
def setupRecordings(self):
m = self.elements
p = self.params
ep = self.expParams
r = Recordings(self.net)
r.input_channels = m.input_channel_popul.record(SpikeTimeRecorder())
spikeTemplateWrap = Dictionary()
spikeTemplateWrap.templates = [ [] for i in range(p.nTemplates) ]
for tmpl_i in range(p.nTemplates):
for ch_i in range(p.nInputChannels):
spikeTemplateWrap.templates[tmpl_i].append(array(m.spiketemplate.segment[0].template[tmpl_i].st[ch_i]))
r.spikeTemplate = spikeTemplateWrap
r.chosenTemplates = m.chosenTemplates
return r
def scriptList(self):
return ["TemplateInputModelKernelRwd.py"]