# XPP code for ML-type model with HH-style subthreshold conductances # from Ratte et al. eLife 2014; 3: e02370 # DIFFERENTIAL EQUATIONS dv/dt = (Istim-gna*minf(V)*(V-Vna)-gk*w*(V-VK)-gl*(V-Vl)-gsubNa*m*(V-Vna)-gsubK*m*(V-Vk)-gadapt*z*(v-VK))/cap dw/dt = phi*(winf(V)-w)/tauw(V) dm/dt = ka*(((V-Va)/sa)/(exp((V-Va)/sa)-1))*(1-m)-kb*exp((V-Vb)/sb)*m dz/dt = (1/(1+exp((beta_z-v)/gamma_z))-z)/tauz #dm/dt = a*(1-m)-b*m #a = ka*(((V-Va)/sa)/(exp((V-Va)/sa)-1)) #b = kb*exp((V-Vb)/sb) # PARAMETERS AND FUNCTIONS minf(v)=.5*(1+tanh((v-v1)/v2)) winf(v)=.5*(1+tanh((v-v3)/v4)) tauw(v)=1/cosh((v-v3)/(2*v4)) # Parameters for ML model param Istim=0 param gsubNa=0,gsubK=0 # vary gsubNa and gsubK to reproduce spiking patterns show in figure 1. param vna=50 param vk=-100,vl=-70 param gk=20,gl=2,gna=20 # v1 and v2 correspond to beta_m and gamma_m respectively # v3 and v4 ''-----------------w-----------w-----------'' param v1=-1.2,v2=14 param v3=-10,v4=10,phi=.15 param gadapt=0.5,tauz=300,beta_z=0,gamma_z=4 param cap=2 # Parameters for HH style conductances param Va=-24,Vb=-24 param sa=-17,sb=-17 param ka=1,kb=1 # INITIAL CONDITIONS V(0)=-70 w(0)=0.000025 m(0)=0 @ total=10000,dt=.05,xlo=-100,xhi=60,ylo=-.125,yhi=.6,xp=v,yp=w @ meth=euler @ MAXSTOR=1000000,bounds=10000 done