# -*- coding: utf-8 -*-
"""
Created on Thu Jul 2 10:32:29 2015
@author: rennocosta
This script is part of the publication Renno-Costa & Tort, 2017, JNeurosci
This script relates to the data presented in the Figures 3 and 4
Will run a single experiment with specific parameters determined below
Output data will be saved in file direction defined at support_filename.py script
"""
import sys, argparse
import numpy as np
from numpy import *
import gzip
import pickle
import support_filename as rfn
import copy
### function to normalize synaptic weights after learning
def normalize_weight(www,www_mean):
www /= np.tile(np.mean(www,axis=0),(www.shape[0],1))
return www
### learning rule
def learn_weight(www,activity_pre,activity_pos,lrate):
www += lrate*(np.tile(activity_pre,(activity_pos.shape[0],1)).transpose()) * (np.tile(activity_pos,(activity_pre.shape[0],1)))
return www
### function to manipulate the non-grid cell input accordingly to the position and context
def lec_whichone(lectype,change,ccc,sss):
saida = np.zeros(lectype.shape)
saida[np.logical_and(lectype==1,change<ccc)] = 2
saida[np.logical_and(lectype==1,change>=ccc)] = 1
saida[np.logical_and(lectype==0,change<sss)] = 2
saida[np.logical_and(lectype==0,change>=sss)] = 1
saida[lectype==2] = 1
return saida
###
def main(argv):
# will parse the arguments
parser = argparse.ArgumentParser(description='Will run a simulation instance.')
# seed values for non-grid cell input activity pattern, initial synaptic weights value and path
parser.add_argument('seed_input', metavar='seed_input', type=int, nargs=1,
help='seed_input number')
parser.add_argument('seed_www', metavar='seed_www', type=int, nargs=1,
help='seed_www')
parser.add_argument('seed_path', metavar='seed_path', type=int, nargs=1,
help='seed_path')
# length of theta cycles
parser.add_argument('theta_cycles', metavar='theta_cycles', type=int, nargs=1,
help='theta_cycles')
parser.add_argument('arena_runs', metavar='arena_runs', type=int, nargs=1,
help='arena_runs')
parser.add_argument('pre_runs', metavar='pre_runs', type=int, nargs=1,
help='pre_runs')
parser.add_argument('true_runs', metavar='true_runs', type=int, nargs=1,
help='true_runs')
# learning rate for place cells -> grid cells; grid cells -> place cells; non-grid cells -> place cells
parser.add_argument('lrate_hpc_mec', metavar='lrate_hpc_mec', type=int, nargs=1,
help='lrate_hpc_mec')
parser.add_argument('lrate_mec_hpc', metavar='lrate_mec_hpc', type=int, nargs=1,
help='lrate_mec_hpc')
parser.add_argument('lrate_lec_hpc', metavar='lrate_lec_hpc', type=int, nargs=1,
help='lrate_lec_hpc')
# relative values for the populations inputs: mec ratio (recurrent vs place cell input);
# hpc ratio (grid cell vs non-gridcell input); hippocampus pattern completion threshold
parser.add_argument('mec_ratio', metavar='mec_ratio', type=int, nargs=1,
help='MEC ratio (x100)')
parser.add_argument('hpc_ratio', metavar='hpc_ratio', type=int, nargs=1,
help='HPC ratio (x100)')
parser.add_argument('hpc_pcompl_th', metavar='hpc_pcompl_th', type=int, nargs=1,
help='HPC pattern completion th (x100)')
parser.add_argument('morph_per', metavar='morph_per', type=int, nargs=1,
help='morph_per')
# define the path for saving the results
# parser.add_argument('-w', '--windows',dest='envir',action='store_const',default="default",const="windows")
# parser.add_argument('-u', '--ufrgs',dest='envir',action='store_const',default="default",const="UFRGS")
parser.add_argument('-s', '--cluster',dest='envir',action='store_const',default="default",const="cluster")
# without -c, will run with 1 memory (morph from memory to noise). with -c, will run with two memories
parser.add_argument('-c', '--connected',dest='conntype',action='store_const',default="no",const="yes")
# will save the activity of population and not only the statistics (be aware of file size)
parser.add_argument('-a', '--activity',dest='actsave',action='store_const',default="no",const="yes")
# will kill simulation if files already exists
parser.add_argument('-k', '--KILL',dest='tokill',action='store_const',default="no",const="yes")
args = parser.parse_args()
envir = args.envir
conntype = args.conntype
actsave = args.actsave
tokill = args.tokill;
if(conntype=="yes"):
conna = True
ct = 1
else:
ct = 0
conna = False
if (actsave=="yes"):
actsaveb = True
else:
actsaveb = False
seed_input = args.seed_input[0]
seed_www = args.seed_www[0]
seed_path = args.seed_path[0]
mec_ratio = float(args.mec_ratio[0])/100
hpc_ratio = float(args.hpc_ratio[0])/100
hpc_pcompl_th = float(args.hpc_pcompl_th[0])/100
morphing_per = float(args.morph_per[0])/100
pre_runs = args.pre_runs[0]
true_runs = args.true_runs[0]
lrate_hpc_mec = float(args.lrate_hpc_mec[0])/1000
lrate_mec_hpc = float(args.lrate_mec_hpc[0])/1000
lrate_lec_hpc = float(args.lrate_lec_hpc[0])/1000
theta_cycles = args.theta_cycles[0]
arena_runs = args.arena_runs[0]
# define the number of the simulation
simulation_num = 68
listofvalues = [ct,args.seed_input[0],args.seed_www[0],args.seed_path[0],args.theta_cycles[0],args.arena_runs[0],args.pre_runs[0],args.true_runs[0],args.lrate_hpc_mec[0],args.lrate_mec_hpc[0],args.lrate_lec_hpc[0],args.mec_ratio[0],args.hpc_ratio[0],args.hpc_pcompl_th[0],args.morph_per[0]]
filenames = rfn.remappingFileNames(envir)
filenames.prepareSimulation(listofvalues,simulation_num)
if (tokill == "no"):
try:
tosee = 0;
with gzip.open(filenames.fileRunPickle(listofvalues,simulation_num,2)+'z', 'rb') as ff:
tosee = tosee + 1
with gzip.open(filenames.fileRunPickle(listofvalues,simulation_num,2)+'z', 'rb') as ff:
tosee = tosee + 1
with gzip.open(filenames.fileRunPickle(listofvalues,simulation_num,3)+'z', 'rb') as ff:
tosee = tosee + 1
print("File exist. Will exit!")
torun = 0;
except:
print("File does not existe. Will do!")
print("... %s" % (filenames.fileRunPickle(listofvalues,simulation_num,0)))
torun = 1;
else:
print("Will do anyway!")
torun = 1;
if(torun == 0):
sys.exit();
# %% will setup the network
arena_binsize = [1,2]
context_per = 0
lec_numcells = 500
hpc_numcells = 5000
# will setup the non-grid cell input patterns
np.random.seed(seed_input)
lec_numcells = 500
lec_activity = []
lec_activity.append(pow(np.random.uniform(0,1,(lec_numcells,arena_binsize[0],arena_binsize[1])),2))
lec_activity.append(pow(np.random.uniform(0,1,(lec_numcells,arena_binsize[0],arena_binsize[1])),2))
lec_type = np.random.uniform(0,1,(lec_numcells,arena_binsize[0],arena_binsize[1]))
lec_type[lec_type>(1-context_per)] = 1
lec_type[lec_type<morphing_per] = 0
lec_type[np.logical_and(lec_type<=(1-context_per),lec_type>=morphing_per)]=2
lec_change = np.random.uniform(0,1,(lec_numcells,arena_binsize[0],arena_binsize[1]))
hpc_memories = []
mec_blocksize = [2,4,6,8,10,12,14,16]
mec_blocks = len(mec_blocksize)
mec_numcells = np.sum(np.power(mec_blocksize,2))
mec_indexlist = []
init_val = 0
for ii in arange(mec_blocks):
mec_indexlist.append((init_val+arange(pow(mec_blocksize[ii],2))).reshape((mec_blocksize[ii],mec_blocksize[ii])))
init_val = np.max(mec_indexlist[ii])+1
del(init_val)
# will setup the paths
np.random.seed(seed_path)
xxx,yyy = np.meshgrid(arange(arena_binsize[0]),arange(arena_binsize[1]))
xxx = xxx.ravel()
popo = []
for ii in arange(100):
popo.append(np.array([0,1]))
# will setup the initial weights
np.random.seed(seed_www)
lec_hpc_weights_mean = 1
lec_hpc_weights = np.random.lognormal(1.0,1.0,(lec_numcells,hpc_numcells))
lec_hpc_weights[lec_hpc_weights<0] = 0
lec_hpc_weights = normalize_weight(lec_hpc_weights,lec_hpc_weights_mean)
mec_hpc_weights_mean = 1
mec_hpc_weights = np.random.lognormal(1.0,1.0,(mec_numcells,hpc_numcells))
mec_hpc_weights[mec_hpc_weights<0] = 0
mec_hpc_weights = normalize_weight(mec_hpc_weights,mec_hpc_weights_mean)
hpc_mec_weights_mean = 1
hpc_mec_weights = np.random.lognormal(1.0,1.0,(hpc_numcells,mec_numcells))
hpc_mec_weights[hpc_mec_weights<0] = 0
hpc_mec_weights = normalize_weight(hpc_mec_weights,hpc_mec_weights_mean)
current_emax = 0.90
current_emax_plast = 0
current_lrate_hpc_mec = lrate_hpc_mec
current_lrate_mec_hpc = lrate_mec_hpc
current_lrate_lec_hpc = lrate_lec_hpc
lec_hpc_weights_mean = 1
mec_hpc_weights_mean = 1
hpc_mec_weights_mean = 1
lec_noise = 0
mec_noise = 0
hpc_noise = 0
# %% will setup the protocol
# 0:20 : morphing
# 21:22+2*runs : learn #1 and #2
# 2*runs+21:41 : morphing
# 2*runs+42:62 : morphin - hpc_lesion
nummorphs = 41
sublento = (ct+1)*pre_runs + nummorphs
lento = nummorphs + sublento * true_runs
mooo = mec_ratio * np.ones((lento)) #[0.9999,0.9999,0.9999,0.9999,0.9999,0.9999,0.9999,0.9999]
hooo = hpc_ratio * np.ones((lento)) #[0.9999,0.9999,0.9999,0.9999,0.9999,0.9999,0.9999,0.9999]
shape_vec = 0.0 * np.ones((lento)) # [0.0,0.0, 0.0,0.0,0.0,1.0,1.0,1.0 ]
context_vec = 0.0 * np.ones((lento)) #[0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.0,0.5]
lllf = 0.0 * np.ones((lento))#[1,1, 0,0,0,0,0,0,]
hppp = hpc_pcompl_th * np.ones((lento))
r_start = concatenate([[0],nummorphs+(arange(true_runs)*sublento)+(ct+1)*pre_runs])
r_end = r_start.copy() + nummorphs - 1
shape_vec[r_start[0]:(r_end[0]+1)] = np.linspace(0.0,1.0,nummorphs)
for ii in arange(true_runs):
lentoi = nummorphs + sublento * ii
lllf[lentoi:(lentoi + (ct+1)*pre_runs)] = 1.0
if (conna == True):
shape_vec[(lentoi+1):(lentoi + (ct+1)*pre_runs):2] = 1.0
shape_vec[r_start[ii+1]:(r_end[ii+1]+1)] = np.linspace(0.0,1.0,nummorphs)
nono = 0.0 * np.ones((lento))
convergethetatime = -1
# %% will run protocol
num_runsss = 1
MECconverge = -1*ones((lento,2,theta_cycles))
HPCconverge = -1*ones((lento,2,theta_cycles))
MECconvergeDist = -1*ones((lento,2,theta_cycles))
HPCconvergeDist = -1*ones((lento,2,theta_cycles))
MECconvergetime = -1*ones((lento,2))
HPCconvergetime = -1*ones((lento,2))
MECconvergeDisttime = -1*ones((lento,2))
HPCconvergeDisttime = -1*ones((lento,2))
if (actsaveb):
LECactivity = -1*ones((3,2,100))
MECactivity = -1*ones((3,2,mec_numcells,theta_cycles))
HPCactivity = -1*ones((3,2,100,theta_cycles))
pvCorrelationCurveHPC1 = -1*ones((true_runs+1,2,nummorphs))
pvCorrelationCurveMEC1 = -1*ones((true_runs+1,2,nummorphs))
pvCorrelationCurveLEC1 = -1*ones((true_runs+1,2,nummorphs))
pvCorrelationCurveHPC2 = -1*ones((true_runs+1,2,nummorphs))
pvCorrelationCurveMEC2 = -1*ones((true_runs+1,2,nummorphs))
pvCorrelationCurveLEC2 = -1*ones((true_runs+1,2,nummorphs))
netconverged = False
for sessions in arange(num_runsss):
print("session %d of %d" % (sessions,num_runsss))
lec_act_vect = []
mec_act_vect = []
hpc_act_vect = []
mec_inact_vect = np.zeros((len(shape_vec),mec_numcells,arena_binsize[0],arena_binsize[1]))
hpc_inact_vect = np.zeros((len(shape_vec),hpc_numcells,arena_binsize[0],arena_binsize[1]))
lec_inact_vect = np.zeros((len(shape_vec),lec_numcells,arena_binsize[0],arena_binsize[1]))
mec_reff_vect = np.zeros((mec_numcells))
hpc_reff_vect = np.zeros((hpc_numcells))
for ii in arange(len(shape_vec)):
print("shape %d of %d" % (ii,len(shape_vec)))
if ((netconverged == False) or (netconverged == True) or (lllf[ii]==0)) :
mec_ratio = mooo[ii]
hpc_ratio = hooo[ii]
lec_act = zeros((lec_numcells,arena_binsize[0],arena_binsize[1]))
mec_act = zeros((mec_numcells,arena_binsize[0],arena_binsize[1]))
hpc_act = zeros((hpc_numcells,arena_binsize[0],arena_binsize[1]))
xxx,yyy = np.meshgrid(arange(arena_binsize[0]),arange(arena_binsize[1]))
xxx = xxx.ravel()
yyy = yyy.ravel()
ppp = np.array([0,1])
xxx = xxx[ppp]
yyy = yyy[ppp]
if (lllf[ii]>0):
xxxr = []
yyyr = []
for arena_runss in arange(arena_runs):
xxxr = concatenate([xxx,xxxr])
yyyr = concatenate([yyy,yyyr])
xxx = xxxr
yyy = yyyr
current_pos = array((xxx[0],yyy[0]))
current_mec_activity = np.zeros(mec_numcells)
current_hpc_activity = np.zeros(hpc_numcells)
current_context = context_vec[ii]
current_shape = shape_vec[ii]
current_vector = lec_whichone(lec_type,lec_change,current_context,current_shape)
base_lec = np.zeros(current_vector.shape)
base_lec = lec_activity[0].copy()
base_lec[current_vector==2] = lec_activity[1][current_vector==2]
#set the random seed
np.random.seed(seed_path+int(round(shape_vec[ii]*100)))
if (nono[ii]>0.0):
ttt = floor(lec_numcells*nono[ii]);
base_lec[:ttt,:,:] = pow(np.random.uniform(0,1,(ttt,arena_binsize[0],arena_binsize[1])),2)
for pp in arange(len(xxx)):
print("aaa %d of %d" % (pp,len(xxx)))
current_pos_old = current_pos
current_pos = array((xxx[pp],yyy[pp]))
current_speed = current_pos - current_pos_old
current_lec_activity = base_lec[:,np.int(current_pos[0]),np.int(current_pos[1])]
current_lec_noise = np.random.uniform(0.0,lec_noise,current_lec_activity.shape)
current_mec_noise = np.random.uniform(0.0,mec_noise,current_mec_activity.shape)
current_hpc_noise = np.random.uniform(0.0,hpc_noise,current_hpc_activity.shape)
lec_inact_vect[np.int(ii),:,np.int(xxx[pp]),np.int(yyy[pp])] = current_lec_activity
thetaconverge = False
for kk in arange(theta_cycles):
if(thetaconverge == False):
if (kk>0):
current_speed = array((0,0))
current_mec_input = (current_mec_activity+current_mec_noise)
h_h = np.dot(current_hpc_activity+current_hpc_noise,hpc_mec_weights)
if(np.max(h_h)>0):
h_h = h_h/np.max(h_h)
h_h[isnan(h_h)] = 0.0
if(mec_ratio>0):
for jj in arange(mec_blocks):
gxx,gyy = meshgrid(arange(mec_blocksize[jj])+(-1)*current_speed[0],arange(mec_blocksize[jj])+(-1)*current_speed[1])
gyy[mod(divide(gxx-mod(gxx,mec_blocksize[jj]),mec_blocksize[jj]),2)>0] = gyy[mod(divide(gxx-mod(gxx,mec_blocksize[jj]),mec_blocksize[jj]),2)>0] + floor(mec_blocksize[jj]/2)
gxx = int0(mod(gxx,mec_blocksize[jj]))
gyy = int0(mod(gyy,mec_blocksize[jj]))
current_mec_input[mec_indexlist[jj]] = current_mec_input[mec_indexlist[jj]][gyy,gxx]
current_mec_input = (1-mec_ratio)*h_h + mec_ratio*current_mec_input
else:
current_mec_input = h_h
current_lec_noise = np.random.uniform(0.0,lec_noise,current_lec_activity.shape)
current_mec_noise = np.random.uniform(0.0,mec_noise,current_mec_activity.shape)
current_hpc_noise = np.random.uniform(0.0,hpc_noise,current_hpc_activity.shape)
for jj in arange(mec_blocks):
current_mec_activity[mec_indexlist[jj]] = (current_mec_input[mec_indexlist[jj]] - current_emax*np.max(current_mec_input[mec_indexlist[jj]]))
current_mec_activity[current_mec_activity<0] = 0.0
current_mec_activity[mec_indexlist[jj]] /= np.max(current_mec_activity[mec_indexlist[jj]])
current_mec_activity[isnan(current_mec_activity)] = 0.0
mec_inact_vect[ii,np.int0(mec_indexlist[jj]),np.int0(xxx[pp]),np.int0(yyy[pp])] = current_mec_activity[np.int0(mec_indexlist[jj])]
h_l = np.dot(current_lec_activity+current_lec_noise,lec_hpc_weights)
h_l = h_l/np.max(h_l)
h_l[isnan(h_l)] = 0.0
if(hpc_ratio>0):
h_m = np.dot(current_mec_activity+current_mec_noise,mec_hpc_weights)
h_m = h_m/np.max(h_m)
h_m[isnan(h_m)] = 0.0
current_hpc_input = (1-hpc_ratio)*h_l + hpc_ratio*h_m
else:
current_hpc_input = h_l
if (kk>0):
ddd = current_hpc_activity * 0
for mm in arange(len(hpc_memories)):
ccc = corrcoef(hpc_memories[mm],current_hpc_activity+current_hpc_noise)[0][1]
if ccc<hpc_pcompl_th:
ccc=0
else:
ddd += hpc_memories[mm]
if (np.max(ddd) > 0):
ddd = ddd/np.max(ddd)
ddd[isnan(ddd)] = 0.0
current_hpc_input = (1-mec_ratio)*current_hpc_input + mec_ratio*ddd
current_hpc_activity = (current_hpc_input - current_emax*np.max(current_hpc_input))
current_hpc_activity[current_hpc_activity<0] = 0.0
current_hpc_activity /= np.max(current_hpc_activity)
current_hpc_activity[current_hpc_activity<current_emax_plast] = 0
hpc_inact_vect[ii,:,np.int0(xxx[pp]),np.int0(yyy[pp])] = current_hpc_activity
if kk==0:
MECconverge[ii,pp,0]= 1.0
HPCconverge[ii,pp,0]= 1.0
MECconvergeDist[ii,pp,0]= 0.0
HPCconvergeDist[ii,pp,0]= 0.0
if (sessions==0) and (actsaveb):
if ii==44:
LECactivity[0,pp,:] = current_lec_activity[0:100]
if ii==54:
LECactivity[1,pp,:] = current_lec_activity[0:100]
if ii==64:
LECactivity[2,pp,:] = current_lec_activity[0:100]
else:
MECconverge[ii,pp,kk] = np.corrcoef(mec_reff_vect,current_mec_activity)[0,1]
if(MECconverge[ii,pp,kk]>0.999):
if (MECconvergetime[ii,pp]<0):
MECconvergetime[ii,pp] = kk-1
HPCconverge[ii,pp,kk] = np.corrcoef(hpc_reff_vect,current_hpc_activity)[0,1]
if(HPCconverge[ii,pp,kk]>0.999):
if (HPCconvergetime[ii,pp]<0):
HPCconvergetime[ii,pp] = kk-1
MECconvergeDist[ii,pp,kk] = np.sum(np.abs(mec_reff_vect-current_mec_activity))
if(MECconvergeDist[ii,pp,kk]<0.1):
if (MECconvergeDisttime[ii,pp]<0):
MECconvergeDisttime[ii,pp] = kk-1
HPCconvergeDist[ii,pp,kk] = np.sum(np.abs(hpc_reff_vect-current_hpc_activity))
if(HPCconvergeDist[ii,pp,kk]<0.1):
if (HPCconvergeDisttime[ii,pp]<0):
HPCconvergeDisttime[ii,pp] = kk-1
if (HPCconvergeDisttime[ii,pp]>=0 and HPCconvergetime[ii,pp]>=0 and MECconvergeDisttime[ii,pp]>=0 and MECconvergetime[ii,pp]>=0 ):
thetaconverge = True
mec_reff_vect = current_mec_activity.copy()
hpc_reff_vect = current_hpc_activity.copy()
if (actsaveb):
if ii==44:
MECactivity[0,pp,:,kk] = current_mec_activity
HPCactivity[0,pp,:,kk] = current_hpc_activity[0:100]
if ii==54:
MECactivity[1,pp,:,kk] = current_mec_activity
HPCactivity[1,pp,:,kk] = current_hpc_activity[0:100]
if ii==64:
MECactivity[2,pp,:,kk] = current_mec_activity
HPCactivity[2,pp,:,kk] = current_hpc_activity[0:100]
if (lllf[ii]>0):
lec_hpc_weights = normalize_weight(learn_weight(lec_hpc_weights,current_lec_activity+current_lec_noise,current_hpc_activity+current_hpc_noise,current_lrate_lec_hpc),lec_hpc_weights_mean)
mec_hpc_weights = normalize_weight(learn_weight(mec_hpc_weights,current_mec_activity+current_mec_noise,current_hpc_activity+current_hpc_noise,current_lrate_mec_hpc),mec_hpc_weights_mean)
hpc_mec_weights = normalize_weight(learn_weight(hpc_mec_weights,current_hpc_activity+current_hpc_noise,current_mec_activity+current_mec_noise,current_lrate_hpc_mec),hpc_mec_weights_mean)
if (lllf[ii]>0) and (hppp[ii]<1.0):
ccc=0
for mm in arange(len(hpc_memories)):
ccc = corrcoef(hpc_memories[mm],current_hpc_activity+current_hpc_noise)[0][1]
if ccc>hpc_pcompl_th:
ccc=1
if ccc == 0:
hpc_memories.append(current_hpc_activity)
lec_act[:,np.int0(xxx[pp]),np.int0(yyy[pp])] = current_lec_activity
mec_act[:,np.int0(xxx[pp]),np.int0(yyy[pp])] = current_mec_activity
hpc_act[:,np.int0(xxx[pp]),np.int0(yyy[pp])] = current_hpc_activity
mec_act_vect.append(mec_act)
lec_act_vect.append(lec_act)
hpc_act_vect.append(hpc_act)
nnnM1 = np.max([HPCconvergeDisttime[ii,0],HPCconvergetime[ii,0],MECconvergeDisttime[ii,0],MECconvergetime[ii,0]])
nnnM2 = np.max([HPCconvergeDisttime[ii,1],HPCconvergetime[ii,1],MECconvergeDisttime[ii,1],MECconvergetime[ii,1]])
nnnZ1 = np.min([HPCconvergeDisttime[ii,0],HPCconvergetime[ii,0],MECconvergeDisttime[ii,0],MECconvergetime[ii,0]])
nnnZ2 = np.min([HPCconvergeDisttime[ii,1],HPCconvergetime[ii,1],MECconvergeDisttime[ii,1],MECconvergetime[ii,1]])
print('convergence times (max): %d %d %d %d' % (nnnM1,nnnM2,nnnZ1,nnnZ2))
print('convergence times (0): %d %d %d %d' % (HPCconvergeDisttime[ii,0],HPCconvergetime[ii,0],MECconvergeDisttime[ii,0],MECconvergetime[ii,0]))
print('convergence times (1): %d %d %d %d' % (HPCconvergeDisttime[ii,1],HPCconvergetime[ii,1],MECconvergeDisttime[ii,1],MECconvergetime[ii,1]))
print('dist %.2f %.2f %.2f %.2f' % (HPCconvergeDist[ii,0,np.int(nnnM1+1)],MECconvergeDist[ii,0,np.int(nnnM1+1)],HPCconvergeDist[ii,1,np.int(nnnM2+1)],MECconvergeDist[ii,1,np.int(nnnM2+1)]))
print('corr %.2f %.2f %.2f %.2f' % (HPCconverge[ii,0,np.int(nnnM1+1)],MECconverge[ii,0,np.int(nnnM1+1)],HPCconverge[ii,1,np.int(nnnM2+1)],MECconverge[ii,1,np.int(nnnM2+1)]))
if(nnnM1==1 and nnnM2==0 and nnnZ1>=0 and nnnZ2>=0 and lllf[ii]>0 and netconverged==False):
netconverged = True
print("converge!!")
convergethetatime = ii - nummorphs
if (actsaveb):
with gzip.open(filenames.fileRunPickle(listofvalues,simulation_num,0)+'z', 'wb') as ff:
pickle.dump([MECactivity,HPCactivity,LECactivity] , ff)
with gzip.open(filenames.fileRunPickle(listofvalues,simulation_num,1)+'z', 'wb') as ff:
pickle.dump([MECconverge,HPCconverge,MECconvergeDist,HPCconvergeDist] , ff)
for zzii in arange(len(r_start)):
for xx in arange(nummorphs):
ooo1a = np.zeros(arena_binsize)
ooo2a = np.zeros(arena_binsize)
ooo1b = np.zeros(arena_binsize)
ooo2b = np.zeros(arena_binsize)
ooo1c = np.zeros(arena_binsize)
ooo2c = np.zeros(arena_binsize)
for ii in arange(arena_binsize[0]):
for jj in arange(arena_binsize[1]):
ooo1a[ii,jj] = np.corrcoef(hpc_inact_vect[r_start[zzii],:,ii,jj],hpc_inact_vect[xx+r_start[zzii],:,ii,jj])[0,1]
ooo1b[ii,jj] = np.corrcoef(mec_inact_vect[r_start[zzii],:,ii,jj],mec_inact_vect[xx+r_start[zzii],:,ii,jj])[0,1]
ooo1c[ii,jj] = np.corrcoef(lec_inact_vect[r_start[zzii],:,ii,jj],lec_inact_vect[xx+r_start[zzii],:,ii,jj])[0,1]
ooo2a[ii,jj] = np.corrcoef(hpc_inact_vect[r_end[zzii],:,ii,jj],hpc_inact_vect[r_end[zzii]-xx,:,ii,jj])[0,1]
ooo2b[ii,jj] = np.corrcoef(mec_inact_vect[r_end[zzii],:,ii,jj],mec_inact_vect[r_end[zzii]-xx,:,ii,jj])[0,1]
ooo2c[ii,jj] = np.corrcoef(lec_inact_vect[r_end[zzii],:,ii,jj],lec_inact_vect[r_end[zzii]-xx,:,ii,jj])[0,1]
pvCorrelationCurveHPC1[zzii,:,xx] = ooo1a[0,:]
pvCorrelationCurveMEC1[zzii,:,xx] = ooo1b[0,:]
pvCorrelationCurveLEC1[zzii,:,xx] = ooo1c[0,:]
pvCorrelationCurveHPC2[zzii,:,xx] = ooo2a[0,:]
pvCorrelationCurveMEC2[zzii,:,xx] = ooo2b[0,:]
pvCorrelationCurveLEC2[zzii,:,xx] = ooo2c[0,:]
with gzip.open(filenames.fileRunPickle(listofvalues,simulation_num,2)+'z', 'wb') as ff:
pickle.dump([pvCorrelationCurveHPC1,pvCorrelationCurveHPC2,pvCorrelationCurveMEC1,pvCorrelationCurveMEC2,pvCorrelationCurveLEC1,pvCorrelationCurveLEC2] , ff)
with gzip.open(filenames.fileRunPickle(listofvalues,simulation_num,3)+'z', 'wb') as ff:
pickle.dump([MECconvergetime,HPCconvergetime,MECconvergeDisttime,HPCconvergeDisttime,convergethetatime] , ff)
if __name__ == "__main__":
main(sys.argv[1:])