function [model] = vol3d(varargin)
%H = VOL3D Volume render 3-D data.
% VOL3D uses the orthogonal plane 2-D texture mapping technique for
% volume rending 3-D data in OpenGL. Use the 'texture' option to fine
% tune the texture mapping technique. This function is best used with
% fast OpenGL hardware.
%
% vol3d Provide a demo of functionality.
%
% H = vol3d('CData',data) Create volume render object from input
% 3-D data. Use interp3 on data to increase volume
% rendering resolution. Returns a struct
% encapsulating the pseudo-volume rendering object.
% XxYxZ array represents scaled colormap indices.
% XxYxZx3 array represents truecolor RGB values for
% each voxel (along the 4th dimension).
%
% vol3d(...,'Alpha',alpha) XxYxZ array of alpha values for each voxel, in
% range [0,1]. Default: data (interpreted as
% scaled alphamap indices).
%
% vol3d(...,'Parent',axH) Specify parent axes. Default: gca.
%
% vol3d(...,'XData',x) 1x2 x-axis bounds. Default: [0 size(data, 2)].
% vol3d(...,'YData',y) 1x2 y-axis bounds. Default: [0 size(data, 1)].
% vol3d(...,'ZData',z) 1x2 z-axis bounds. Default: [0 size(data, 3)].
%
% vol3d(...,'texture','2D') Only render texture planes parallel to nearest
% orthogonal viewing plane. Requires doing
% vol3d(h) to refresh if the view is rotated
% (i.e. using cameratoolbar).
%
% vol3d(...,'texture','3D') Default. Render x,y,z texture planes
% simultaneously. This avoids the need to
% refresh the view but requires faster OpenGL
% hardware peformance.
%
% vol3d(H) Refresh view. Updates rendering of texture planes
% to reduce visual aliasing when using the 'texture'='2D'
% option.
%
% NOTES
% Use vol3dtool (from the original vol3d FEX submission) for editing the
% colormap and alphamap. Adjusting these maps will allow you to explore
% your 3-D volume data at various intensity levels. See documentation on
% alphamap and colormap for more information.
%
% Use interp3 on input date to increase/decrease resolution of data
%
% Examples:
%
% % Visualizing fluid flow
% v = flow(50);
% h = vol3d('cdata',v,'texture','2D');
% view(3);
% % Update view since 'texture' = '2D'
% vol3d(h);
% alphamap('rampdown'), alphamap('decrease'), alphamap('decrease')
%
% % Visualizing MRI data
% load mri.mat
% D = squeeze(D);
% h = vol3d('cdata',D,'texture','3D');
% view(3);
% axis tight; daspect([1 1 .4])
% alphamap('rampup');
% alphamap(.06 .* alphamap);
%
% See also alphamap, colormap, opengl, isosurface
% Copyright Joe Conti, 2004
% Improvements by Oliver Woodford, 2008-2011, with permission of the
% copyright holder.
x_ang = 45; y_ang = 55;
if nargin == 0
demo_vol3d;
return
end
if isstruct(varargin{1})
model = varargin{1};
if length(varargin) > 1
varargin = {varargin{2:end}};
end
else
model = localGetDefaultModel;
end
if length(varargin)>1
for n = 1:2:length(varargin)
switch(lower(varargin{n}))
case 'cdata'
model.cdata = varargin{n+1};
case 'parent'
model.parent = varargin{n+1};
case 'texture'
model.texture = varargin{n+1};
case 'alpha'
model.alpha = varargin{n+1};
case 'xdata'
model.xdata = varargin{n+1}([1 end]);
case 'ydata'
model.ydata = varargin{n+1}([1 end]);
case 'zdata'
model.zdata = varargin{n+1}([1 end]);
end
end
end
if isempty(model.parent)
model.parent = gca;
end
rotate(model.parent, [1 0 0], 0);
%rotate(model.parent, [1 0 0], 30);
[model] = local_draw(model, x_ang, y_ang);
%------------------------------------------%
function [model] = localGetDefaultModel
model.cdata = [];
model.alpha = [];
model.xdata = [];
model.ydata = [];
model.zdata = [];
model.parent = [];
model.handles = [];
model.texture = '3D';
tag = tempname;
model.tag = ['vol3d_' tag(end-11:end)];
%------------------------------------------%
function [model, ax] = local_draw(model, x_ang, y_ang)
cdata = model.cdata;
siz = size(cdata);
% Define [x,y,z]data
if isempty(model.xdata)
model.xdata = [0 siz(2)];
end
if isempty(model.ydata)
model.ydata = [0 siz(1)];
end
if isempty(model.zdata)
model.zdata = [0 siz(3)];
end
% try
% delete(model.handles);
% catch
% end
ax = model.parent;
cam_dir = camtarget(ax) - campos(ax);
[m,ind] = max(abs(cam_dir));
opts = {'Parent',ax,'cdatamapping',[],'alphadatamapping',[],'facecolor','texturemap','edgealpha',0,'facealpha','texturemap','tag',model.tag};
if ndims(cdata) > 3
opts{4} = 'direct';
else
cdata = double(cdata);
opts{4} = 'scaled';
end
if isempty(model.alpha)
alpha = cdata;
if ndims(model.cdata) > 3
alpha = sqrt(sum(double(alpha).^2, 4));
alpha = alpha - min(alpha(:));
alpha = 1 - alpha / max(alpha(:));
end
opts{6} = 'scaled';
else
alpha = model.alpha;
if ~isequal(siz(1:3), size(alpha))
error('Incorrect size of alphamatte');
end
opts{6} = 'none';
end
% h = findobj(ax,'type','surface','tag',model.tag);
% for n = 1:length(h)
% try
% delete(h(n));
% catch
% end
% end
is3DTexture = strcmpi(model.texture,'3D');
handle_ind = 1;
% Create z-slice
if(ind==3 || is3DTexture )
x = [model.xdata(1), model.xdata(2); model.xdata(1), model.xdata(2)];
y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)];
z = [model.zdata(1), model.zdata(1); model.zdata(1), model.zdata(1)];
diff = model.zdata(2)-model.zdata(1);
delta = diff/size(cdata,3);
for n = 1:size(cdata,3)
cslice = squeeze(cdata(:,:,n,:));
aslice = double(squeeze(alpha(:,:,n)));
kk = surface(x,y,z,cslice,'alphadata',aslice,opts{:});
rotate(kk, [1 0 0], x_ang);
rotate(kk, [0 1 0], y_ang);
h(handle_ind) = kk;
z = z + delta;
handle_ind = handle_ind + 1;
end
end
% Create x-slice
if (ind==1 || is3DTexture )
x = [model.xdata(1), model.xdata(1); model.xdata(1), model.xdata(1)];
y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)];
z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)];
diff = model.xdata(2)-model.xdata(1);
delta = diff/size(cdata,2);
for n = 1:size(cdata,2)
cslice = squeeze(cdata(:,n,:,:));
aslice = double(squeeze(alpha(:,n,:)));
kk = surface(x,y,z,cslice,'alphadata',aslice,opts{:});
rotate(kk, [1 0 0], x_ang);
rotate(kk, [0 1 0], y_ang);
h(handle_ind) = kk;
x = x + delta;
handle_ind = handle_ind + 1;
end
end
% Create y-slice
if (ind==2 || is3DTexture)
x = [model.xdata(1), model.xdata(1); model.xdata(2), model.xdata(2)];
y = [model.ydata(1), model.ydata(1); model.ydata(1), model.ydata(1)];
z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)];
diff = model.ydata(2)-model.ydata(1);
delta = diff/size(cdata,1);
for n = 1:size(cdata,1)
cslice = squeeze(cdata(n,:,:,:));
aslice = double(squeeze(alpha(n,:,:)));
kk = surface(x,y,z,cslice,'alphadata',aslice,opts{:});
rotate(kk, [1 0 0], x_ang);
rotate(kk, [0 1 0], y_ang);
h(handle_ind) = kk;
y = y + delta;
handle_ind = handle_ind + 1;
end
end
model.handles = h;
function demo_vol3d
figure;
load mri.mat
vol3d('cdata', squeeze(D), 'xdata', [0 1], 'ydata', [0 1], 'zdata', [0 0.7]);
colormap(bone(256));
alphamap([0 linspace(0.1, 0, 255)]);
axis equal off
set(gcf, 'color', 'w');
view(3);