|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--java.util.Observable | +--lnsc.page.AbstractObservableAgent | +--grsnc.binb.Rivest06
Title: BG Math Model (Francois Rivest, 10 Mar 2006)
Description: Agent based a Mathematical Model of the Basal Ganglia
Copyright: Copyright (c) 2004
Company: UdeM
Note: Eligibility traces are bounded between -1 and 1. (Actors still untraced)
Summary. In this model, the critic uses standard TD formula, while the actor uses a natural gradient that gives biological three-synaptic update rule. Although the critic part is not totally biologically plausible, it is the same as the Suri&Schultz1999Model equations. It would be interesting to find a biologically plausible equivalent formula.
Implementation details:
Assumptions:
Field Summary | |
static java.lang.String |
ACTION
|
static java.lang.String |
ACTORS
|
static java.lang.String |
ACTORS_WEIGHTS
|
static java.lang.String |
ACTORS_WEIGHTS_CHANGE
|
static java.lang.String |
CRITICS
|
static java.lang.String |
CRITICS_WEIGHTS
|
static java.lang.String |
CRITICS_WEIGHTS_CHANGE
|
static java.lang.String |
DOPAMINE
|
static java.lang.String |
PREDICTION
|
static java.lang.String |
REWARD
|
static java.lang.String |
STIMULUS
|
Constructor Summary | |
Rivest06(int newActorCount,
int newCriticCount,
StateRepresentation newStateRep,
double newLearningRate,
double newInitWeightFactor)
Construct an agent based on Francois Rivest May 17 BG Math Model. |
Method Summary | |
void |
endEpisode(State finalState)
Complete processContext. |
void |
newEpisode(State newState)
Starts by filling previous stimuli, prediction and action. |
Action |
requestAction(State currentState)
Computes actors and critics activities with no-reward given at time t. |
void |
returnReward(State resultState,
double reward)
Save reward. |
DataSet |
toDataSet()
Similar to the toString method, but return state content in the form of a DataSet. |
java.lang.String |
toString()
|
Methods inherited from class lnsc.page.AbstractObservableAgent |
getEvalMode, isAdaptive, isEvaluable, notifyObservers, setEvalMode |
Methods inherited from class java.util.Observable |
addObserver, countObservers, deleteObserver, deleteObservers, hasChanged, notifyObservers |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
public static final java.lang.String ACTION
public static final java.lang.String ACTORS
public static final java.lang.String ACTORS_WEIGHTS
public static final java.lang.String ACTORS_WEIGHTS_CHANGE
public static final java.lang.String CRITICS
public static final java.lang.String CRITICS_WEIGHTS
public static final java.lang.String CRITICS_WEIGHTS_CHANGE
public static final java.lang.String DOPAMINE
public static final java.lang.String PREDICTION
public static final java.lang.String REWARD
public static final java.lang.String STIMULUS
Constructor Detail |
public Rivest06(int newActorCount, int newCriticCount, StateRepresentation newStateRep, double newLearningRate, double newInitWeightFactor)
newCriticCount
- Number of critic neurons.newLearningRate
- Actor & Critic learning rates.newInitWeightFactor
- Initialization weight factor.Method Detail |
public void endEpisode(State finalState)
finalState
- Final state of the episode.public void newEpisode(State newState)
newState
- First stae of the episode.public Action requestAction(State currentState)
currentState
- The current state of the agent.
public void returnReward(State resultState, double reward)
resultState
- Resulting state from last action.reward
- Resulting reward from last action.public DataSet toDataSet()
Agent
toDataSet
in interface Agent
toDataSet
in class AbstractObservableAgent
public java.lang.String toString()
toString
in class java.lang.Object
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |