|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--lnsc.lstm.AbstractLSTMFactory | +--lnsc.lstm.LSTMFactory
Basis to write a Long Short-Term Memory (LSMT) network factory.
Basis for Gers, Schraudolph & Schmiduber 2002 (from Journal of Machine Learning Research 3:115-143) LSTM network. See also Gers, Schmidhuber, & Cummins 2000 (from Neural Computation, 12(10) 2451-2471) and Hochreiter & Schmidhuber 1997 (from Neural Computation 9(8):1735-1780).
This factory comes with some connectivity and activation options. All weights are initialized with value in the range [-.1,.1].
FastLSTMNetwork
,
AbstractLSTMFactory
Constructor Summary | |
LSTMFactory(int newInputCount,
int newBlockCount,
int newCellperBlock,
boolean newSquashInput,
boolean newSquashOutput,
int newOutputCount,
FunctionalUnit newSampleOutput,
boolean newGateToGate,
boolean newBiasToOutput,
boolean newInputToOutput,
boolean newGateToOutput)
Construct an LSTM network factory. |
|
LSTMFactory(int newInputCount,
int newBlockCount,
int newCellperBlock,
boolean newSquashInput,
boolean newSquashOutput,
int newOutputCount,
FunctionalUnit newSampleOutput,
boolean newGateToGate,
boolean newBiasToOutput,
boolean newInputToOutput,
boolean newGateToOutput,
double newOutputWeightsLocalGradientFactor)
Construct an LSTM network factory. |
Methods inherited from class lnsc.lstm.AbstractLSTMFactory |
createUnit |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
public LSTMFactory(int newInputCount, int newBlockCount, int newCellperBlock, boolean newSquashInput, boolean newSquashOutput, int newOutputCount, FunctionalUnit newSampleOutput, boolean newGateToGate, boolean newBiasToOutput, boolean newInputToOutput, boolean newGateToOutput)
newInputCount
- Number of input to the network.newBlockCount
- Number of memory block.newCellperBlock
- Number of memory cells per block.newSquashInput
- true to squash input to cell (default)
false without (use identity instead)newSquashOutput
- true to squash output of cell as in older papers
false without squashing (default)newOutputCount
- Number of output of the networknewSampleOutput
- Sample of an output function (should have one
input and one output, default LogisticUnit(1,0))newGateToGate
- Connects block gates to block (default false)newBiasToOutput
- Connects bias to output layer (default true)newInputToOutput
- Connects input to output layer (default true)newGateToOutput
- Connects block gates to output layer (default true)public LSTMFactory(int newInputCount, int newBlockCount, int newCellperBlock, boolean newSquashInput, boolean newSquashOutput, int newOutputCount, FunctionalUnit newSampleOutput, boolean newGateToGate, boolean newBiasToOutput, boolean newInputToOutput, boolean newGateToOutput, double newOutputWeightsLocalGradientFactor)
newInputCount
- Number of input to the network.newBlockCount
- Number of memory block.newCellperBlock
- Number of memory cells per block.newSquashInput
- true to squash input to cell (default)
false without (use identity instead)newSquashOutput
- true to squash output of cell as in older papers
false without squashing (default)newOutputCount
- Number of output of the networknewSampleOutput
- Sample of an output function (should have one
input and one output, default LogisticUnit(1,0))newGateToGate
- Connects block gates to block (default false)newBiasToOutput
- Connects bias to output layer (default true)newInputToOutput
- Connects input to output layer (default true)newGateToOutput
- Connects block gates to output layer (default true)newOutputWeightsLocalGradientFactor
- Scales the gradien of the
output weigths internally.
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |