for i = 0, nSyn-1 {
SELECTED = 0
while (!SELECTED) {
//select section (sec) using apical_non_trunk_list
//repick a random number
sec=int(ransec.repick()) //select section
dend[sec].sec {
//select location (loc)
ranseg.uniform(1, nseg+1) //generate distribution for selecting segments
tmpnseg = int(ranseg.repick()) //repick a random number
loc = (2*tmpnseg - 1)/(2*nseg)
//check if the distance is correct, otherwise start from the beginning
xdist = find_vector_distance_precise(secname(),loc)
if ((xdist > min_distance) && (xdist < max_distance)) {SELECTED=1}
} //exit from section
} //close while loop
//locate synapses
dend[sec].sec {
syn[i] = new tmgsyn(loc)
//insert NetStim
nstim[i] = new NetStim(0.5)
netcon[i] = new NetCon(nstim[i],syn[i])
flagW = 0
while (!flagW) {
wei = 5+ranwei.repick() //x0=5 for fitting data by Ito & Schuman
if (wei > 0) {
netcon[i].weight = 100*wei/(70*1000)
//divide by 70 mV
//divide by 1000 to change from nS to uS
//multiply by a factor to simulate multiple sinapses
flagW = 1
}
}
} //close locate synapses
} //close main loop