// $Id: pywrap.hoc,v 1.12 2011/03/21 21:34:16 samn Exp $
//* variables
declare("INITPYWRAP",0) // whether initialized properly
//* initialize pywrap
if(2!=name_declared("p")) {
print "pywrap.hoc: loading python.hoc"
load_file("python.hoc")
}
func initpywrap () { localobj pjnk
INITPYWRAP=0
if(2!=name_declared("p")){printf("initpywrap ERR0A: PythonObject p not found in python.hoc!\n") return 0}
print p
pjnk=new PythonObject()
if(!isojt(p,pjnk)){printf("initpywrap ERR0B: PythonObject p not found in python.hoc!\n")}
INITPYWRAP=1
return 1
}
initpywrap()
//** pypmtm(vec,samplingrate)
// this function calls python version of pmtm, runs multitaper power spectra, returns an nqs
obfunc pypmtm () { local sampr,spc localobj vin,str,nqp,ptmp
if(!INITPYWRAP) {printf("pypmtm ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from mtspec import *")) {printf("pypmtm ERR0B: could not import mtspec python library!\n") return nil}
if(numarg()==0) {printf("pypmtm(vec,samplingrate)\n") return nil}
vin=$o1 sampr=$2 str=new String()
p.vjnk = vin.to_python()
p.vjnk = p.numpy.array(p.vjnk)
spc = 1.0 / sampr // "spacing"
sprint(str.s,"[Pxx,w]=mtspec(vjnk,%g,4)",spc)
nrnpython(str.s)
nqp=new NQS("f","pow")
nqp.v.from_python(p.w)
nqp.v[1].from_python(p.Pxx)
return nqp
}
//** pybspow(vec,samplingrate[,maxf,pord])
// this function calls python version of bsmart, to get power pectrum, returns an nqs
// pord is order of polynomial -- higher == less smoothing. default is 12
obfunc pybspow () { local sampr,pord,maxf localobj vin,str,nqp,ptmp
if(!INITPYWRAP) {printf("pybspow ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from bsmart import bspow")) {printf("pybspow ERR0B: could not import bsmart python library!\n") return nil}
if(numarg()==0) {printf("pybspow(vec,samplingrate)\n") return nil}
vin=$o1 sampr=$2 str=new String()
if(numarg()>2) maxf=$3 else maxf=sampr/2
if(numarg()>3) pord=$4 else pord=12
p.vjnk = vin.to_python()
p.vjnk = p.numpy.array(p.vjnk)
sprint(str.s,"Pxx=bspow(vjnk,%g,%g,p=%d)",sampr,maxf,pord)
nrnpython(str.s)
nqp=new NQS("f","pow")
nqp.v.indgen(0,maxf,1)
nqp.v[1].from_python(p.Pxx)
return nqp
}
//** pyspecgram(vec,samplingrate[,orows])
// this function calls python version of specgram, returns an nqs
obfunc pyspecgram () { local sampr,spc,i,j,sz,f,tt,orows,a localobj vin,str,nqp,ptmp,vtmp
if(!INITPYWRAP) {printf("pyspecgram ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from matplotlib.mlab import specgram")) {printf("pyspecgram ERR0B: could not import specgram from matplotlib.mlab!\n") return nil}
if(numarg()==0) {printf("pyspecgram(vec,samplingrate)\n") return nil}
a=allocvecs(vtmp)
vin=$o1 sampr=$2 str=new String()
if(numarg()>2)orows=$3 else orows=1
p.vjnk = vin.to_python()
p.vjnk = p.numpy.array(p.vjnk)
sprint(str.s,"[Pxx,freqs,tt]=specgram(vjnk,Fs=%g)",sampr)
nrnpython(str.s)
if(orows) {
{nqp=new NQS("f","pow") nqp.odec("pow")}
{sz=p.Pxx.shape[0] nqp.clear(sz)}
for i=0,sz-1 {
{vtmp.resize(0) vtmp.from_python(p.Pxx[i]) f=p.freqs[i]}
nqp.append(f,vtmp)
}
} else {
nqp=new NQS("f","pow","t")
sz = p.Pxx.shape[0]
nqp.clear(sz * p.Pxx.shape[1])
for i=0,sz-1 {
{vtmp.resize(0) vtmp.from_python(p.Pxx[i]) f=p.freqs[i]}
for j=0,vtmp.size-1 nqp.append(f,vtmp.x(j),p.tt[j])
}
}
dealloc(a)
return nqp
}
//** pycsd(vec1,vec2,samplingrate)
// this function calls python version of csd (cross-spectral density)
// returns an nqs with csd -- csd is non-directional
obfunc pycsd () { local sampr,a localobj v1,v2,str,nqp
if(!INITPYWRAP) {printf("pycsd ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from matplotlib.mlab import csd")) {printf("pycsd ERR0B: could not import csd from matplotlib.mlab!\n") return nil}
if(numarg()==0) {printf("pycsd(vec,samplingrate)\n") return nil}
v1=$o1 v2=$o2 sampr=$3 str=new String()
{p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)}
{p.vjnk2=v2.to_python() p.vjnk2=p.numpy.array(p.vjnk2)}
sprint(str.s,"[Pxy,freqs]=csd(vjnk1,vjnk2,Fs=%g)",sampr)
nrnpython(str.s)
nqp=new NQS("f","pow")
nqp.v[0].from_python(p.freqs)
nqp.v[1].from_python(p.Pxy)
return nqp
}
//** pypsd(vec,samplingrate)
// this function calls python version of psd (power-spectral density)
// returns an nqs with psd
obfunc pypsd () { local sampr localobj v1,str,nqp
if(!INITPYWRAP) {printf("pypsd ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from matplotlib.mlab import psd")) {printf("pypsd ERR0B: could not import psd from matplotlib.mlab!\n") return nil}
if(numarg()==0) {printf("pypsd(vec,samplingrate)\n") return nil}
v1=$o1 sampr=$2 str=new String()
{p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)}
sprint(str.s,"[Pxx,freqs]=psd(vjnk1,Fs=%g)",sampr)
nrnpython(str.s)
nqp=new NQS("f","pow")
nqp.v[0].from_python(p.freqs)
nqp.v[1].from_python(p.Pxx)
return nqp
}
//** pycohere(vec1,vec2,samplingrate)
// this function calls python version of cohere (coherence is normalized csd btwn vec1, vec2)
// returns an nqs with coherence
obfunc pycohere () { local sampr,a localobj v1,v2,str,nqp
if(!INITPYWRAP) {printf("pycohere ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from matplotlib.mlab import cohere")) {printf("pycohere ERR0B: could not import cohere from matplotlib.mlab!\n") return nil}
if(numarg()==0) {printf("pycohere(vec1,vec2,samplingrate)\n") return nil}
v1=$o1 v2=$o2 sampr=$3 str=new String()
{p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)}
{p.vjnk2=v2.to_python() p.vjnk2=p.numpy.array(p.vjnk2)}
sprint(str.s,"[Pxy,freqs]=cohere(vjnk1,vjnk2,Fs=%g)",sampr)
nrnpython(str.s)
nqp=new NQS("f","coh")
nqp.v[0].from_python(p.freqs)
nqp.v[1].from_python(p.Pxy)
return nqp
}