// $Id: stats.hoc,v 1.6 2011/07/05 20:31:11 samn Exp $
print "Loading stats.hoc..."
//based on code from:
//http://pdos.csail.mit.edu/grid/sim/capacity-ns.tgz/capacity-sim/new-ns/
//hoc template that allows sampling from a pareto power law distribution
//specified with objref rd
//rd = new rdmpareto($1=avg,$2=shape,[$3=seed])
//then picking values with .pick , or assigning to a vec with assignv(vec)
begintemplate rdmpareto
public avg,shape,rd,seed,pick,repick,paretoc,pareto5,assignv,reset,pareto4,pareto3
double avg[1],shape[1],seed[1]
objref rd
proc init () {
avg=$1 shape=$2
if(numarg()>2)seed=$3 else seed=1234
rd=new Random()
rd.ACG(seed)
}
proc reset () {
rd.ACG(seed)
}
func paretoc () { local scale,shape,U
scale=$1 shape=$2 U = rd.uniform(0,1)
return scale * (1.0/ U^(1/shape) )
}
func pareto5 () { local avg,shape
avg=$1 shape=$2
return paretoc( avg * (shape -1)/shape, shape)
}
func pareto4 () { local alpha,u
alpha=$2
u = 1 - rd.uniform(0,1)
return $1 + 1 / u^(1/alpha)
}
func pareto3 () { local x,z,b,a
b = avg // 1 //min value
a = shape // 10
x = rd.uniform(0,1)
z = x^-1/a
return 1 + b * z
}
func pick () {
return pareto5(avg,shape)
}
func repick () {
return pick()
}
func assignv () { local i localobj vi
vi=$o1
for i=0,vi.size-1 vi.x(i)=pick()
}
endtemplate rdmpareto
func skew () { local a,ret localobj v1
a=allocvecs(v1)
$o1.getcol($s2).moment(v1)
ret=v1.x[4]
dealloc(a)
return ret
}
func skewv () { localobj v1
v1=new Vector(5)
$o1.moment(v1)
return v1.x(4)
}
//** test rsampsig
objref vIN0,vIN1,vhsout,myrdm,vrs,VA
R0SZ=30000//size of group 0
R1SZ=30000//size of group 1
RPRC=100 // # of trials (combinations)
RS0M=0 //mean of group 0
RS1M=0 //mean of group 1
RS0SD=1 //sdev of group 0
RS1SD=1 //sdev of group 1
proc rsi () {
if(myrdm==nil) myrdm=new Random()
{myrdm.normal(RS0M,RS0SD) vIN0=new Vector(R0SZ) vIN0.setrand(myrdm)}
{myrdm.normal(RS1M,RS1SD) vIN1=new Vector(R1SZ) vIN1.setrand(myrdm)}
vhsout=new Vector(vIN0.size+vIN1.size)
if(RPRC>1){
vrs=new Vector(RPRC)
} else {
vrs=new Vector(combs_stats(R0SZ+R1SZ,mmax(R0SZ,R1SZ))*RPRC)
}
VA=new Vector() VA.copy(vIN0) VA.append(vIN1)
}
func hocmeasure () {
hretval_stats=vhsout.mean
return vhsout.mean
}
func compfunc () {
if(verbose_stats>1) printf("$1=%g,$2=%g\n",$1,$2)
hretval_stats=$1-$2
return hretval_stats
}
onesided=0
nocmbchk=1
pval=tval=0
func testrs () { local dd localobj str
if(numarg()>0)dd=$1 else dd=1
str=new String()
rsi()
vhsout.resize(vIN0.size+vIN1.size)
pval=vrs.rsampsig(vIN0,vIN1,RPRC,"hocmeasure","compfunc",vhsout,onesided,nocmbchk)
tval=ttest(vIN0,vIN1)
if(dd){
sprint(str.s,"p(abs(m0-m1))>%g=%g, t=%g, e=%g",abs(vIN0.mean-vIN1.mean),pval,tval,abs(pval-tval)/tval)
{ge() ers=0 clr=1 hist(g,VA) clr=2 hist(g,vIN0) clr=3 hist(g,vIN1) g.label(0,0.95,str.s)}
sprint(str.s,"m0=%g, m1=%g, n0=%g, n1=%g, s0=%g, s1=%g",vIN0.mean,vIN1.mean,vIN0.size,vIN1.size,vIN0.stdev,vIN1.stdev)
g.label(0.0,0.0,str.s)
sprint(str.s,"m0-m1=%g",vIN0.mean-vIN1.mean)
g.label(0,0.9,str.s)
g.exec_menu("View = plot")
}
printf("pval=%g, tval=%g, err=%g\n",pval,tval,abs(pval-tval)/tval)
return pval
}
//* nhppvec(intensityvec,dt,maxt[,se])
// returns a Vector of spike times generated by a nonhomogenous poisson process
// described by intensity function intensityvec, with dt time-step, maxt max time
// and se the seed for random # generator
// this algorithm is called 'thinning'
obfunc nhppvec () { local i,dt,tt,maxt,maxi,se,tidx localobj tvec,ivec,rdm
tvec=new Vector(100e3) tvec.resize(0)
ivec=$o1 dt=$2 maxt=$3
if(numarg()>3)se=$4 else se=1234
rdm=new Random()
rdm.ACG(se)
tt=0
maxi=ivec.max
while(tt<maxt) {
tt = tt - 1.0/maxi * log(rdm.uniform(0,1))
tidx = tt / dt
if(tidx >= ivec.size) break
if(rdm.uniform(0,1) <= ivec.x(tidx) / maxi) {
tvec.append(tt)
}
}
return tvec
}