: K-Strom, I_CT, Stacey, Durand 2000
: eK from Martina
UNITS
{
(molar) = (1/liter)
(mM) = (millimolar)
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
NEURON {
SUFFIX KCT
USEION ca READ cai
USEION k WRITE ik
RANGE gCTbar, gCT
GLOBAL cinf, dinf, dtau, ctau
}
PARAMETER
{
gCTbar = 0.120 (S/cm2) <0,1e9>
eK = -95 (mV)
ctau = 0.55 (ms)
}
STATE
{
c d
}
ASSIGNED
{
ik (mA/cm2)
cai (mM)
v (mV)
celsius (degC)
gCT (S/cm2)
cinf
dinf
dtau (ms)
: ctau (ms)
}
BREAKPOINT
{
SOLVE states METHOD cnexp
gCT = gCTbar*c*c*d
ik = gCT*(v - eK)
}
INITIAL
{
rates(v)
c = cinf
d = dinf
}
DERIVATIVE states
{
rates(v)
c' = (cinf-c)/ctau
d' = (dinf-d)/dtau
}
LOCAL q10
PROCEDURE rates(v(mV)) :Computes rate and other constants at current v.
:Call once from HOC to initialize inf at resting v.
{
LOCAL alpha, beta, sum, vshift
UNITSOFF
vshift = 40 * log10(cai)
q10 = 3^((celsius - 6.3)/10)
:"c" potassium activation system
alpha = -0.0077 * vtrap(v+vshift+103, -12)
beta = 1.7 / exp((v+vshift+237)/30)
sum = alpha + beta
: see Warman
: ctau = 1/sum
cinf = alpha/sum
: "d" activation
alpha = 1/(exp((v+79)/10))
beta = 4/(exp((v-82)/-27)+1)
sum = alpha + beta
dinf = alpha/sum
dtau = 1/sum
}
FUNCTION vtrap(x,y) { :Traps for 0 in denominator of rate eqns.
if (fabs(x/y) < 1e-6) {
vtrap = y*(1 - x/y/2)
}else{
vtrap = x/(exp(x/y) - 1)
}
}
UNITSON