/* Created by Language version: 6.2.0 */
/* VECTORIZED */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib.h"
#undef PI
#include "md1redef.h"
#include "section.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#undef exp
#define exp hoc_Exp
extern double hoc_Exp();
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gbar _p[0]
#define ica _p[1]
#define m _p[2]
#define alpha _p[3]
#define beta _p[4]
#define Dm _p[5]
#define v _p[6]
#define _g _p[7]
#define _ion_ica *_ppvar[0]._pval
#define _ion_dicadv *_ppvar[1]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
/* declaration of user functions */
static int _hoc_settables();
static int _mechtype;
extern int nrn_get_mechtype();
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static _hoc_setdata() {
Prop *_prop, *hoc_getdata_range();
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
ret(1.);
}
/* connect user functions to hoc names */
static IntFunc hoc_intfunc[] = {
"setdata_cal", _hoc_setdata,
"settables_cal", _hoc_settables,
0, 0
};
static void _check_settables(double*, Datum*, Datum*, _NrnThread*);
static void _check_table_thread(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, int _type) {
_check_settables(_p, _ppvar, _thread, _nt);
}
/* declare global and static user variables */
#define usetable usetable_cal
double usetable = 1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"usetable_cal", 0, 1,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"gbar_cal", "mho/cm2",
"ica_cal", "mA/cm2",
0,0
};
static double delta_t = 1;
static double m0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"usetable_cal", &usetable_cal,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(), nrn_init(), nrn_state();
static void nrn_cur(), nrn_jacob();
static int _ode_count(), _ode_map(), _ode_spec(), _ode_matsol();
#define _cvode_ieq _ppvar[2]._i
/* connect range variables in _p that hoc is supposed to know about */
static char *_mechanism[] = {
"6.2.0",
"cal",
"gbar_cal",
0,
"ica_cal",
0,
"m_cal",
0,
0};
static Symbol* _ca_sym;
static void nrn_alloc(_prop)
Prop *_prop;
{
Prop *prop_ion, *need_memb();
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 8, _prop);
/*initialize range parameters*/
gbar = 0;
_prop->param = _p;
_prop->param_size = 8;
_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
_ppvar[0]._pval = &prop_ion->param[3]; /* ica */
_ppvar[1]._pval = &prop_ion->param[4]; /* _ion_dicadv */
}
static _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
_cal_reg() {
int _vectorized = 1;
_initlists();
ion_reg("ca", -10000.);
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
_nrn_thread_table_reg(_mechtype, _check_table_thread);
hoc_register_dparam_size(_mechtype, 3);
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 cal C:/Users/Tim/Dropbox/neuron/optimisetraub/model/cal.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double *_t_alpha;
static double *_t_beta;
static int _reset;
static char *modelname = "Calcium high-threshold L type current for RD Traub, J Neurophysiol 89:909-921, 2003";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static _modl_cleanup(){ _match_recurse=1;}
static _f_settables();
static settables();
static int _ode_spec1(), _ode_matsol1();
static _n_settables();
static int _slist1[1], _dlist1[1];
static int states();
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
settables ( _threadargscomma_ v ) ;
Dm = alpha * ( 1.0 - m ) - beta * m ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
settables ( _threadargscomma_ v ) ;
Dm = Dm / (1. - dt*( (alpha)*(( ( - 1.0 ) )) - (beta)*(1.0) )) ;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
settables ( _threadargscomma_ v ) ;
m = m + (1. - exp(dt*((alpha)*(( ( - 1.0 ) )) - (beta)*(1.0))))*(- ( (alpha)*(( 1.0 )) ) / ( (alpha)*(( ( - 1.0) )) - (beta)*(1.0) ) - m) ;
}
return 0;
}
static double _mfac_settables, _tmin_settables;
static void _check_settables(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
static int _maktable=1; int _i, _j, _ix = 0;
double _xi, _tmax;
if (!usetable) {return;}
if (_maktable) { double _x, _dx; _maktable=0;
_tmin_settables = - 120.0 ;
_tmax = 40.0 ;
_dx = (_tmax - _tmin_settables)/641.; _mfac_settables = 1./_dx;
for (_i=0, _x=_tmin_settables; _i < 642; _x += _dx, _i++) {
_f_settables(_p, _ppvar, _thread, _nt, _x);
_t_alpha[_i] = alpha;
_t_beta[_i] = beta;
}
}
}
static settables(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv) {
#if 0
_check_settables(_p, _ppvar, _thread, _nt);
#endif
_n_settables(_p, _ppvar, _thread, _nt, _lv);
return;
}
static _n_settables(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv){ int _i, _j;
double _xi, _theta;
if (!usetable) {
_f_settables(_p, _ppvar, _thread, _nt, _lv); return;
}
_xi = _mfac_settables * (_lv - _tmin_settables);
_i = (int) _xi;
if (_xi <= 0.) {
alpha = _t_alpha[0];
beta = _t_beta[0];
return; }
if (_i >= 641) {
alpha = _t_alpha[641];
beta = _t_beta[641];
return; }
_theta = _xi - (double)_i;
alpha = _t_alpha[_i] + _theta*(_t_alpha[_i+1] - _t_alpha[_i]);
beta = _t_beta[_i] + _theta*(_t_beta[_i+1] - _t_beta[_i]);
}
static int _f_settables ( _p, _ppvar, _thread, _nt, _lv ) double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
double _lv ;
{
double _ltmp ;
alpha = 1.6 / ( 1.0 + exp ( - 0.072 * ( _lv - 5.0 ) ) ) ;
_ltmp = _lv + 8.9 ;
if ( fabs ( _ltmp ) < 1e-6 ) {
beta = 0.1 * exp ( - _ltmp / 5.0 ) ;
}
else {
beta = 0.02 * _ltmp / ( exp ( _ltmp / 5.0 ) - 1.0 ) ;
}
return 0; }
static int _hoc_settables() {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
#if 1
_check_settables(_p, _ppvar, _thread, _nt);
#endif
_r = 1.;
settables ( _p, _ppvar, _thread, _nt, *getarg(1) ) ;
ret(_r);
}
static int _ode_count(_type) int _type;{ return 1;}
static int _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static int _ode_map(_ieq, _pv, _pvdot, _pp, _ppd, _atol, _type) int _ieq, _type; double** _pv, **_pvdot, *_pp, *_atol; Datum* _ppd; {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 1; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static int _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 3);
nrn_update_ion_pointer(_ca_sym, _ppvar, 1, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
m = m0;
{
settables ( _threadargscomma_ v ) ;
m = alpha / ( alpha + beta ) ;
m = 0.0 ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if 0
_check_settables(_p, _ppvar, _thread, _nt);
#endif
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
initmodel(_p, _ppvar, _thread, _nt);
}}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
ica = gbar * m * m * ( v - 125.0 ) ;
}
_current += ica;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dica;
_dica = ica;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dicadv += (_dica - ica)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ica += ica ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double _break, _save;
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_break = t + .5*dt; _save = t;
v=_v;
{
{ {
for (; t < _break; t += dt) {
states(_p, _ppvar, _thread, _nt);
}}
t = _save;
} }}
}
static terminal(){}
static _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_t_alpha = makevector(642*sizeof(double));
_t_beta = makevector(642*sizeof(double));
_first = 0;
}