/* Created by Language version: 6.2.0 */
/* VECTORIZED */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib.h"
#undef PI
 
#include "md1redef.h"
#include "section.h"
#include "md2redef.h"

#if METHOD3
extern int _method3;
#endif

#undef exp
#define exp hoc_Exp
extern double hoc_Exp();
 
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 /* Thread safe. No static _p or _ppvar. */
 
#define t _nt->_t
#define dt _nt->_dt
#define gbar _p[0]
#define ik _p[1]
#define m _p[2]
#define h _p[3]
#define ek _p[4]
#define minf _p[5]
#define hinf _p[6]
#define mtau _p[7]
#define htau _p[8]
#define Dm _p[9]
#define Dh _p[10]
#define v _p[11]
#define _g _p[12]
#define _ion_ek	*_ppvar[0]._pval
#define _ion_ik	*_ppvar[1]._pval
#define _ion_dikdv	*_ppvar[2]._pval
 
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
 static int hoc_nrnpointerindex =  -1;
 static Datum* _extcall_thread;
 static Prop* _extcall_prop;
 /* external NEURON variables */
 /* declaration of user functions */
 static int _hoc_settables();
 static int _mechtype;
extern int nrn_get_mechtype();
 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _extcall_prop = _prop;
 }
 static _hoc_setdata() {
 Prop *_prop, *hoc_getdata_range();
 _prop = hoc_getdata_range(_mechtype);
   _setdata(_prop);
 ret(1.);
}
 /* connect user functions to hoc names */
 static IntFunc hoc_intfunc[] = {
 "setdata_k2", _hoc_setdata,
 "settables_k2", _hoc_settables,
 0, 0
};
 
static void _check_settables(double*, Datum*, Datum*, _NrnThread*); 
static void _check_table_thread(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, int _type) {
   _check_settables(_p, _ppvar, _thread, _nt);
 }
 /* declare global and static user variables */
#define usetable usetable_k2
 double usetable = 1;
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 "usetable_k2", 0, 1,
 0,0,0
};
 static HocParmUnits _hoc_parm_units[] = {
 "gbar_k2", "mho/cm2",
 "ik_k2", "mA/cm2",
 0,0
};
 static double delta_t = 1;
 static double h0 = 0;
 static double m0 = 0;
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 "usetable_k2", &usetable_k2,
 0,0
};
 static DoubVec hoc_vdoub[] = {
 0,0,0
};
 static double _sav_indep;
 static void nrn_alloc(), nrn_init(), nrn_state();
 static void nrn_cur(), nrn_jacob();
 
static int _ode_count(), _ode_map(), _ode_spec(), _ode_matsol();
 
#define _cvode_ieq _ppvar[3]._i
 /* connect range variables in _p that hoc is supposed to know about */
 static char *_mechanism[] = {
 "6.2.0",
"k2",
 "gbar_k2",
 0,
 "ik_k2",
 0,
 "m_k2",
 "h_k2",
 0,
 0};
 static Symbol* _k_sym;
 
static void nrn_alloc(_prop)
	Prop *_prop;
{
	Prop *prop_ion, *need_memb();
	double *_p; Datum *_ppvar;
 	_p = nrn_prop_data_alloc(_mechtype, 13, _prop);
 	/*initialize range parameters*/
 	gbar = 0;
 	_prop->param = _p;
 	_prop->param_size = 13;
 	_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
 	_prop->dparam = _ppvar;
 	/*connect ionic variables to this model*/
 prop_ion = need_memb(_k_sym);
 nrn_promote(prop_ion, 0, 1);
 	_ppvar[0]._pval = &prop_ion->param[0]; /* ek */
 	_ppvar[1]._pval = &prop_ion->param[3]; /* ik */
 	_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dikdv */
 
}
 static _initlists();
  /* some states have an absolute tolerance */
 static Symbol** _atollist;
 static HocStateTolerance _hoc_state_tol[] = {
 0,0
};
 static void _update_ion_pointer(Datum*);
 _k2_reg() {
	int _vectorized = 1;
  _initlists();
 	ion_reg("k", -10000.);
 	_k_sym = hoc_lookup("k_ion");
 	register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
     _nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
     _nrn_thread_table_reg(_mechtype, _check_table_thread);
  hoc_register_dparam_size(_mechtype, 4);
 	hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
 	hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 k2 C:/Users/Tim/Dropbox/neuron/optimisetraub/model/k2.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
 }
 static double *_t_minf;
 static double *_t_hinf;
 static double *_t_mtau;
 static double *_t_htau;
static int _reset;
static char *modelname = "Potasium Type K2 current for RD Traub, J Neurophysiol 89:909-921, 2003";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static _modl_cleanup(){ _match_recurse=1;}
static _f_settables();
static settables();
 
static int _ode_spec1(), _ode_matsol1();
 static _n_settables();
 static int _slist1[2], _dlist1[2];
 static int states();
 
/*CVODE*/
 static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
   settables ( _threadargscomma_ v ) ;
   Dm = ( minf - m ) / mtau ;
   Dh = ( hinf - h ) / htau ;
   }
 return _reset;
}
 static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
 settables ( _threadargscomma_ v ) ;
 Dm = Dm  / (1. - dt*( ( ( ( - 1.0 ) ) ) / mtau )) ;
 Dh = Dh  / (1. - dt*( ( ( ( - 1.0 ) ) ) / htau )) ;
}
 /*END CVODE*/
 static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
   settables ( _threadargscomma_ v ) ;
    m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / mtau)))*(- ( ( ( minf ) ) / mtau ) / ( ( ( ( - 1.0) ) ) / mtau ) - m) ;
    h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / htau)))*(- ( ( ( hinf ) ) / htau ) / ( ( ( ( - 1.0) ) ) / htau ) - h) ;
   }
  return 0;
}
 static double _mfac_settables, _tmin_settables;
  static void _check_settables(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  static int _maktable=1; int _i, _j, _ix = 0;
  double _xi, _tmax;
  if (!usetable) {return;}
  if (_maktable) { double _x, _dx; _maktable=0;
   _tmin_settables =  - 120.0 ;
   _tmax =  40.0 ;
   _dx = (_tmax - _tmin_settables)/641.; _mfac_settables = 1./_dx;
   for (_i=0, _x=_tmin_settables; _i < 642; _x += _dx, _i++) {
    _f_settables(_p, _ppvar, _thread, _nt, _x);
    _t_minf[_i] = minf;
    _t_hinf[_i] = hinf;
    _t_mtau[_i] = mtau;
    _t_htau[_i] = htau;
   }
  }
 }

 static settables(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv) { 
#if 0
_check_settables(_p, _ppvar, _thread, _nt);
#endif
 _n_settables(_p, _ppvar, _thread, _nt, _lv);
 return;
 }

 static _n_settables(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv){ int _i, _j;
 double _xi, _theta;
 if (!usetable) {
 _f_settables(_p, _ppvar, _thread, _nt, _lv); return; 
}
 _xi = _mfac_settables * (_lv - _tmin_settables);
 _i = (int) _xi;
 if (_xi <= 0.) {
 minf = _t_minf[0];
 hinf = _t_hinf[0];
 mtau = _t_mtau[0];
 htau = _t_htau[0];
 return; }
 if (_i >= 641) {
 minf = _t_minf[641];
 hinf = _t_hinf[641];
 mtau = _t_mtau[641];
 htau = _t_htau[641];
 return; }
 _theta = _xi - (double)_i;
 minf = _t_minf[_i] + _theta*(_t_minf[_i+1] - _t_minf[_i]);
 hinf = _t_hinf[_i] + _theta*(_t_hinf[_i+1] - _t_hinf[_i]);
 mtau = _t_mtau[_i] + _theta*(_t_mtau[_i+1] - _t_mtau[_i]);
 htau = _t_htau[_i] + _theta*(_t_htau[_i+1] - _t_htau[_i]);
 }

 
static int  _f_settables ( _p, _ppvar, _thread, _nt, _lv ) double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt; 
	double _lv ;
 {
   minf = 1.0 / ( 1.0 + exp ( ( - _lv - 10.0 ) / 17.0 ) ) ;
   mtau = 4.95 + 0.5 / ( exp ( ( _lv - 81.0 ) / 25.6 ) + exp ( ( - _lv - 132.0 ) / 18.0 ) ) ;
   hinf = 1.0 / ( 1.0 + exp ( ( _lv + 58.0 ) / 10.6 ) ) ;
   htau = 60.0 + 0.5 / ( exp ( ( _lv - 1.33 ) / 200.0 ) + exp ( ( - _lv - 130.0 ) / 7.1 ) ) ;
    return 0; }
 
static int _hoc_settables() {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 
#if 1
 _check_settables(_p, _ppvar, _thread, _nt);
#endif
 _r = 1.;
 settables ( _p, _ppvar, _thread, _nt, *getarg(1) ) ;
 ret(_r);
}
 
static int _ode_count(_type) int _type;{ return 2;}
 
static int _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  ek = _ion_ek;
     _ode_spec1 (_p, _ppvar, _thread, _nt);
  }}
 
static int _ode_map(_ieq, _pv, _pvdot, _pp, _ppd, _atol, _type) int _ieq, _type; double** _pv, **_pvdot, *_pp, *_atol; Datum* _ppd; { 
	double* _p; Datum* _ppvar;
 	int _i; _p = _pp; _ppvar = _ppd;
	_cvode_ieq = _ieq;
	for (_i=0; _i < 2; ++_i) {
		_pv[_i] = _pp + _slist1[_i];  _pvdot[_i] = _pp + _dlist1[_i];
		_cvode_abstol(_atollist, _atol, _i);
	}
 }
 
static int _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  ek = _ion_ek;
 _ode_matsol1 (_p, _ppvar, _thread, _nt);
 }}
 extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
 static void _update_ion_pointer(Datum* _ppvar) {
   nrn_update_ion_pointer(_k_sym, _ppvar, 0, 0);
   nrn_update_ion_pointer(_k_sym, _ppvar, 1, 3);
   nrn_update_ion_pointer(_k_sym, _ppvar, 2, 4);
 }

static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  int _i; double _save;{
  h = h0;
  m = m0;
 {
   settables ( _threadargscomma_ v ) ;
   m = minf ;
   m = 0.0 ;
   h = hinf ;
   }
 
}
}

static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];

#if 0
 _check_settables(_p, _ppvar, _thread, _nt);
#endif
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v = _v;
  ek = _ion_ek;
 initmodel(_p, _ppvar, _thread, _nt);
 }}

static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
   ik = gbar * m * h * ( v - ek ) ;
   }
 _current += ik;

} return _current;
}

static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
  ek = _ion_ek;
 _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
 	{ double _dik;
  _dik = ik;
 _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
  _ion_dikdv += (_dik - ik)/.001 ;
 	}
 _g = (_g - _rhs)/.001;
  _ion_ik += ik ;
#if CACHEVEC
  if (use_cachevec) {
	VEC_RHS(_ni[_iml]) -= _rhs;
  }else
#endif
  {
	NODERHS(_nd) -= _rhs;
  }
 
}}

static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml];
#if CACHEVEC
  if (use_cachevec) {
	VEC_D(_ni[_iml]) += _g;
  }else
#endif
  {
     _nd = _ml->_nodelist[_iml];
	NODED(_nd) += _g;
  }
 
}}

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
 double _break, _save;
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 _break = t + .5*dt; _save = t;
 v=_v;
{
  ek = _ion_ek;
 { {
 for (; t < _break; t += dt) {
   states(_p, _ppvar, _thread, _nt);
  
}}
 t = _save;
 } }}

}

static terminal(){}

static _initlists(){
 double _x; double* _p = &_x;
 int _i; static int _first = 1;
  if (!_first) return;
 _slist1[0] = &(m) - _p;  _dlist1[0] = &(Dm) - _p;
 _slist1[1] = &(h) - _p;  _dlist1[1] = &(Dh) - _p;
   _t_minf = makevector(642*sizeof(double));
   _t_hinf = makevector(642*sizeof(double));
   _t_mtau = makevector(642*sizeof(double));
   _t_htau = makevector(642*sizeof(double));
_first = 0;
}