{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "0b85a598", "metadata": {}, "outputs": [], "source": [ "from brian2 import *\n", "\n", "from adex_sine import *\n", "\n", "defaultclock.dt = 10 * us\n", "\n", "\n", "class Model:\n", " # Model type flags\n", " SINE = 0\n", " EXP2SYN = 1\n", "\n", " # Noise flags\n", " HIGH = 0\n", " LOW = 1\n", " OFF = -1\n", "\n", " # Noise parameters\n", " EXCITATORY_NOISE_VARIANCE = {HIGH: 0.5 * nS, LOW: 0.25 * nS, OFF: 0 * nS}\n", " INHIBITORY_NOISE_VARIANCE = {HIGH: 1.25 * nS, LOW: 0.625 * nS, OFF: 0 * nS}\n", "\n", " # Noise mean conductance\n", " EXCITATORY_CONDUCTANCE = 1 * nS\n", " INHIBITORY_CONDUCTANCE = 4 * nS\n", "\n", " DEFAULT_PARAMETERS = {\n", " \"sigma_flux\" : 6.75*pA, \n", " \"c\": 85 * pF,\n", " \"tau_w\": 18 * ms,\n", " \"b\": 0.25 * nA,\n", " \"a\": 1.3 * nS,\n", " \"v_T\": -45 * mV,\n", " \"v_thresh\": 0 * mV,\n", " \"DeltaT\": 0.2 * mV,\n", " # EQUILIBRIUM POTENTIAL\n", " \"e_l\": -65 * mV,\n", " \"e_ex\": 0 * mV,\n", " \"e_in\": -70 * mV,\n", " # CONDUCTANCES\n", " \"g_l\": 3 * nS,\n", " \"mu_ex\": 0 * nS,\n", " \"mu_in\": 0 * nS,\n", " # EXCITATORY NOISE\n", " \"sigma_ex\": 0 * nS,\n", " \"tau_noise_ex\": 3 * ms,\n", " # INHIBITORY NOISE\n", " \"sigma_in\": 0 * nS,\n", " \"tau_noise_in\": 10 * ms,\n", " # SINE INPUT\n", " \"f\": 100 * Hz,\n", " \"A\": 0 * pA,\n", " \"i_injected\": 0 * pA,\n", " \"v_reset\": -70 * mV,\n", " # m current\n", " \"g_adapt\": 10 * nS,\n", " \"e_k\": -90*mV,\n", " \"beta_z\": -35*mV,\n", " \"gamma_z\": 4*mV, #5\n", " \"tau_z\": 100*ms,\n", " }\n", "\n", " def __init__(\n", " self, n, *, stim=None, noise=None, resistance=None, additional_vars=()\n", " ):\n", " if resistance is None:\n", " raise ValueError(\"Resistance must be specified\")\n", "\n", " if noise is None:\n", " raise ValueError(\"Noise must be specified\")\n", "\n", " self.stim_type = stim\n", " self._input_resistance = None\n", " self._noise_level = None\n", " self._duration = 0\n", " self.recorded_vars = (\"v\",) + additional_vars\n", "\n", " self.neurons = self.set_default(n_neuron=n)\n", " self.set_resistance(resistance)\n", " self.set_noise(noise)\n", "\n", " self.spikes = None\n", " self.spiker = None\n", " self.synapses = None\n", " self.inhib_synapses = None\n", " self.smon = None\n", " self.network = None\n", " self.build_network()\n", "\n", " def create_model(self):\n", " return ADEX_MODEL, self.DEFAULT_PARAMETERS\n", "\n", " def set_default(self, n_neuron):\n", " model, parameters = self.create_model()\n", "\n", " neurons = NeuronGroup(\n", " n_neuron,\n", " model=model,\n", " method=\"Euler\",\n", " name=\"neurons\",\n", " threshold=\"v > v_thresh\",\n", " reset=\"v = v_reset; w += b\",\n", " )\n", "\n", " for parameter, value in parameters.items():\n", " neurons.__setattr__(parameter, value)\n", "\n", " neurons.v = neurons.e_l # remove most of transient\n", "\n", " return neurons\n", "\n", " def set_resistance(self, level):\n", " if level == self.LOW:\n", " exc_conductance = self.EXCITATORY_CONDUCTANCE\n", " inhib_conductance = self.INHIBITORY_CONDUCTANCE\n", "\n", " else:\n", " exc_conductance = inhib_conductance = 0\n", "\n", " self._input_resistance = level\n", " self._set_variable(\"mu_ex\", exc_conductance)\n", " self._set_variable(\"mu_in\", inhib_conductance)\n", "\n", " def set_noise(self, level):\n", " if level == self.HIGH or level == self.LOW:\n", " exc_noise = self.EXCITATORY_NOISE_VARIANCE[level]\n", " inhib_noise = self.INHIBITORY_NOISE_VARIANCE[level]\n", "\n", " else:\n", " exc_noise = inhib_noise = 0\n", "\n", " self._noise_level = level\n", " self._set_variable(\"sigma_ex\", exc_noise)\n", " self._set_variable(\"sigma_in\", inhib_noise)\n", "\n", " def set_injected_current(self, amplitude):\n", " self._set_variable(\"i_injected\", amplitude)\n", " self._set_variable(\"A\", 0 * pA)\n", "\n", " def set_stimulus_current(self, amplitude):\n", " self._set_variable(\"A\", amplitude)\n", " self._set_variable(\"i_injected\", 0 * pA)\n", "\n", " @property\n", " def f(self):\n", " return self.neurons.f\n", "\n", " @f.setter\n", " def f(self, new_f):\n", " self._set_variable(\"f\", new_f) # this will reset smon\n", " if self.stim_type == self.EXP2SYN:\n", " self.spiker.T = 1 / new_f\n", "\n", " def run(self, duration, report=\"stdout\"):\n", " self._duration = duration\n", " self.network.run(duration, report=report)\n", "\n", " def build_network(self):\n", " self.smon = StateMonitor(\n", " self.neurons, self.recorded_vars, record=True, name=\"smon\"\n", " )\n", " self.spikes = SpikeMonitor(self.neurons, name=\"spikes\")\n", "\n", " self.network = Network(self.neurons, self.smon, self.spikes)\n", "\n", " def _set_variable(self, name, value):\n", " self.neurons.__setattr__(name, value)\n", " self.reset_recording()\n", "\n", " def reset_recording(self):\n", " try:\n", " self.network\n", " except AttributeError:\n", " return # network not yet initialized\n", "\n", " self.network.remove(self.smon, self.spikes)\n", "\n", " self.smon = StateMonitor(\n", " self.neurons, self.recorded_vars, record=True, name=\"smon\"\n", " )\n", " self.spikes = SpikeMonitor(self.neurons, name=\"spikes\")\n", "\n", " self.network.add(self.smon, self.spikes)\n", "\n", " @property\n", " def spike_train(self):\n", " return self.spikes.spike_trains()\n", "\n", " @property\n", " def firing_rate(self):\n", " return self.spikes.count / self.duration\n", "\n", " @property\n", " def duration(self):\n", " return self._duration\n", "\n", " @property\n", " def input_resistance(self):\n", " if self._input_resistance == self.HIGH:\n", " return \"HIGH\"\n", " else:\n", " return \"LOW\"\n", "\n", " @property\n", " def noise_level(self):\n", " if self._noise_level == self.HIGH:\n", " return \"HIGH\"\n", " elif self._noise_level == self.LOW:\n", " return \"LOW\"\n", " else:\n", " return \"NO\"\n", "\n", " def __repr__(self):\n", " return f\"{self.neurons.N} Neurons with {self.input_resistance} input resistance and {self.noise_level} noise\"\n", "\n", " def __str__(self):\n", " return self.__repr__()\n", "\n", " def store(self, name):\n", " self.network.store(name)\n", "\n", " def restore(self, name):\n", " self.network.restore(name)\n", "\n", " @property\n", " def v(self):\n", " return self.smon.v\n", "\n", " @property\n", " def t(self):\n", " return self.smon.t\n", "\n", " @property\n", " def injected_current(self):\n", " return self.neurons.i_injected\n", "\n", " @property\n", " def stimulus_amplitude(self):\n", " return self.neurons.A\n", "\n", "\n", "class CurrentModel(Model):\n", " def __init__(self, **kwargs):\n", " super().__init__(stim=self.SINE, **kwargs)\n", "\n", " def create_model(self):\n", " model, parameters = super().create_model()\n", " model += CURRENT_INPUT\n", "\n", " return model, parameters\n", "\n", "\n", "class SineModel(CurrentModel):\n", " def create_model(self):\n", " model, parameters = super().create_model()\n", " model += SINE_INPUT\n", "\n", " return model, parameters\n", "\n", "\n", "class SawModel(CurrentModel):\n", " def create_model(self):\n", " model, parameters = super().create_model()\n", " model += SAW_INPUT\n", "\n", " return model, parameters\n", "\n", "\n", "class SynapticModel(Model):\n", " def __init__(self, **kwargs):\n", " super().__init__(stim=self.EXP2SYN, **kwargs)\n", "\n", " SYNAPTIC_PARAMETERS = {\n", " \"tau_input_1\": 0.4 * ms,\n", " \"tau_input_2\": 4 * ms,\n", " \"offset_A\": 1.48793507e-11,\n", " \"offset_B\": -2.66359562e-08,\n", " \"offset_C\": 1.77538800e-05,\n", " \"offset_D\": -8.05925810e-04,\n", " \"offset_E\": -3.51463644e-02,\n", " \"offset_switch\": 0,\n", " }\n", "\n", " def create_model(self):\n", " model, parameters = super().create_model()\n", " model += EXP2SYN_WAVEFORM + SUMMATION_OFFSET\n", " parameters = {**parameters, **self.SYNAPTIC_PARAMETERS}\n", "\n", " return model, parameters\n", "\n", " def build_network(self):\n", " super().build_network()\n", " self.spiker = NeuronGroup(\n", " self.neurons.N,\n", " \"\"\"T : second (constant)\n", " lastspike : second\"\"\",\n", " threshold=\"timestep(t-lastspike, dt)>=timestep(T, dt)\",\n", " reset=\"lastspike=t\",\n", " )\n", " self.spiker.T = 1 / self.neurons.f\n", " self.synapses = Synapses(\n", " self.spiker, self.neurons, on_pre=\"input_aux += 1\"\n", " ) # connect input to neurons\n", " self.synapses.connect(\"i==j\") # one synapse goes to one neuron\n", "\n", " self.network.add(self.spiker, self.synapses)\n", "\n", "\n", "class SynapticCurrentModel(SynapticModel):\n", " def __init__(self, offset=True, **kwargs):\n", " self.offset = 1 if offset else 0\n", " super().__init__(**kwargs)\n", "\n", " def create_model(self):\n", " model, parameters = super().create_model()\n", " model += CURRENT_INPUT + SYNAPTIC_INPUT_CURRENT\n", " parameters = {**parameters, **{\"offset_switch\": self.offset}}\n", "\n", " return model, parameters\n", "\n", "\n", "class SynapticConductanceModel(SynapticModel):\n", " FLAT = 0\n", " ACTIVE = 1\n", "\n", " CONDUCTANCE_PARAMETERS = {\n", " \"A\": 0 * nS, # overwrite A to be conductance\n", " \"g_i\": 1 * nS,\n", " }\n", "\n", " INHIBITION_PARAMETERS = {\n", " \"tau_inhibition_1\": 1 * ms,\n", " \"tau_inhibition_2\": 10 * ms,\n", " }\n", "\n", " def __init__(self, offset=ACTIVE, **kwargs):\n", " self.offset = offset\n", " super().__init__(**kwargs)\n", "\n", " def create_model(self):\n", " model, parameters = super().create_model()\n", " if self.offset == self.FLAT:\n", " model += CONDUCTANCE_INPUT + SYNAPTIC_CONDUCTANCE_FLAT\n", " parameters = {\n", " **parameters,\n", " **self.SYNAPTIC_PARAMETERS,\n", " **self.CONDUCTANCE_PARAMETERS,\n", " **{\"offset_switch\": 1},\n", " }\n", "\n", " elif self.offset == self.ACTIVE:\n", " model += CONDUCTANCE_INPUT + SYNAPTIC_CONDUCTANCE_STIM\n", " parameters = {\n", " **parameters,\n", " **self.SYNAPTIC_PARAMETERS,\n", " **self.CONDUCTANCE_PARAMETERS,\n", " **self.INHIBITION_PARAMETERS,\n", " }\n", "\n", " return model, parameters\n", "\n", " def build_network(self):\n", " super().build_network()\n", " if self.offset != self.ACTIVE:\n", " return\n", "\n", " self.inhib_synapses = Synapses(\n", " self.spiker, self.neurons, on_pre=\"input_inhib_aux += 1\", delay=2 * ms\n", " ) # connect input to neurons\n", " self.inhib_synapses.connect(\"i==j\") # one synapse goes to one neuron\n", "\n", " self.network.add(self.inhib_synapses)" ] }, { "cell_type": "code", "execution_count": 2, "id": "c82769f2", "metadata": { "scrolled": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING Cannot use Cython, a test compilation failed: Microsoft Visual C++ 14.0 or greater is required. Get it with \"Microsoft C++ Build Tools\": https://visualstudio.microsoft.com/visual-cpp-build-tools/ (DistutilsPlatformError) [brian2.codegen.runtime.cython_rt.cython_rt.failed_compile_test]\n", "INFO Cannot use compiled code, falling back to the numpy code generation target. Note that this will likely be slower than using compiled code. Set the code generation to numpy manually to avoid this message:\n", "prefs.codegen.target = \"numpy\" [brian2.devices.device.codegen_fallback]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Starting simulation at t=0. s for a duration of 12. s\n", "0.58253 s (4%) simulated in 10s, estimated 3m 16s remaining.\n", "1.15981 s (9%) simulated in 20s, estimated 3m 7s remaining.\n", "1.69137 s (14%) simulated in 30s, estimated 3m 3s remaining.\n", "2.22497 s (18%) simulated in 40s, estimated 2m 56s remaining.\n", "2.75661 s (22%) simulated in 50s, estimated 2m 48s remaining.\n", "3.28667 s (27%) simulated in 1m 0s, estimated 2m 39s remaining.\n", "3.81362 s (31%) simulated in 1m 10s, estimated 2m 30s remaining.\n", "4.33885 s (36%) simulated in 1m 20s, estimated 2m 21s remaining.\n", "4.867 s (40%) simulated in 1m 30s, estimated 2m 12s remaining.\n", "5.38241 s (44%) simulated in 1m 40s, estimated 2m 3s remaining.\n", "5.90864 s (49%) simulated in 1m 50s, estimated 1m 53s remaining.\n", "6.43339 s (53%) simulated in 2m 0s, estimated 1m 44s remaining.\n", "6.96195 s (58%) simulated in 2m 10s, estimated 1m 34s remaining.\n", "7.48483 s (62%) simulated in 2m 20s, estimated 1m 24s remaining.\n", "8.01163 s (66%) simulated in 2m 30s, estimated 1m 15s remaining.\n", "8.53504 s (71%) simulated in 2m 40s, estimated 1m 5s remaining.\n", "9.05681 s (75%) simulated in 2m 50s, estimated 55s remaining.\n", "9.57916 s (79%) simulated in 3m 0s, estimated 46s remaining.\n", "10.09889 s (84%) simulated in 3m 10s, estimated 36s remaining.\n", "10.60629 s (88%) simulated in 3m 20s, estimated 26s remaining.\n", "11.12776 s (92%) simulated in 3m 30s, estimated 16s remaining.\n", "11.64162 s (97%) simulated in 3m 40s, estimated 7s remaining.\n", "12. s (100%) simulated in 3m 47s\n" ] }, { "data": { "text/plain": [ "[<matplotlib.collections.EventCollection at 0x25a1a1db5e0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1db910>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1dbbe0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1dbeb0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1ee1f0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1ee4f0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1ee7f0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1eeaf0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1eedf0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1fa130>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1fa430>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1fa730>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1faa30>,\n", " <matplotlib.collections.EventCollection at 0x25a1a1fad30>,\n", " <matplotlib.collections.EventCollection at 0x25a1a895070>,\n", " <matplotlib.collections.EventCollection at 0x25a1a895370>,\n", " <matplotlib.collections.EventCollection at 0x25a1a895670>,\n", " <matplotlib.collections.EventCollection at 0x25a1a895970>,\n", " <matplotlib.collections.EventCollection at 0x25a1a895c70>,\n", " <matplotlib.collections.EventCollection at 0x25a1a895f70>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8a22b0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8a25b0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8a2880>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8a2b50>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8a2e50>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8ad190>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8ad490>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8ad790>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8ada90>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8add90>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8b90d0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8b93d0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8b96d0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8b99d0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8b9cd0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8b9fd0>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8c6310>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8c6610>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8c6910>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8c6c10>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8c6f10>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8d0250>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8d0550>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8d0850>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8d0b50>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8d0e50>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8dd190>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8dd490>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8dd760>,\n", " <matplotlib.collections.EventCollection at 0x25a1a8dda60>]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAANs0lEQVR4nO3dX4hc533G8e9T1cUhf4hUr4Sw3KoUE2pCa8NiatyLNI6Lm5hIDTiyIWULBvmiAYe2JEquml6Z0obclCI1MV2atrHADRImbSqUmNYgnKwcJ7GRg0JwXNeLtLEbYt+02P71Yo+cze5qd3Z3/r0z3w+ImTna1fz8+vjh1bNnjlNVSJLa8wujHkCStD0GuCQ1ygCXpEYZ4JLUKANckhr1i8N8s+uuu64OHjw4zLeUpOadP3/+x1U1s/r4UAP84MGDLCwsDPMtJal5SX603nErFElqlAEuSY0ywCWpUQa4JDXKAJekRvV0FUqS54FXgTeA16tqNske4BHgIPA88NGq+p/BjClJWm0rO/Dfraqbq2q2e30MOFtVNwJnu9eSpCHZSYVyCJjvns8Dh3c8jSSpZ70GeAH/nuR8kqPdsX1VtQjQPe5d7xuTHE2ykGRhaWlp5xNLkoDeP4l5e1W9lGQvcCbJc72+QVWdAE4AzM7O+n+PkKQ+6WkHXlUvdY+Xga8AtwKXkuwH6B4vD2pIrXXk+DmOHD836jEkjdCmAZ7k7UneeeU58HvAM8BpYK77sjng1KCGlCSt1UuFsg/4SpIrX/9PVfVvSb4FnExyP/ACcM/gxpQkrbZpgFfVD4HfWuf4y8AdgxhKkrS5od5OVv3zyAO39fXPu9Kn9/vPlTQ4fpRekhplgEtSowxwSWqUHbgAu2+pRe7AJalRBrgkNcoAl6RGGeBD5P1LJPWTAS5JjTLAJalRBrgkNcrrwIeohWutvSeK1A534JLUKANckhplgEtSo+zAB6DlHrnFmaVp5Q5ckhplgEtSo6xQBmArNUTLdYuk0XIHLkmNMsAlqVEGuCQ1yg58xMap+7aPl9riDlySGmWAS1KjDHBJalSzHbh9bf+5llJb3IFLUqMMcElqVM8BnmRXkm8neax7vSfJmSQXu8fdgxtTkrTaVnbgDwIXVrw+BpytqhuBs93roXnkgdumrrM9cvzcW92/JPUU4EkOAB8CvrDi8CFgvns+Dxzu62SSpA31ugP/PPBJ4M0Vx/ZV1SJA97h3vW9McjTJQpKFpaWlncwqSVph0wBPcjdwuarOb+cNqupEVc1W1ezMzMx2/ghJ0jp6uQ78duDDST4IXAu8K8mXgEtJ9lfVYpL9wOVBDqrJvE7b6/ml7dt0B15Vn66qA1V1ELgX+HpVfQw4Dcx1XzYHnBrYlJKkNXZyHfhDwJ1JLgJ3dq8lSUOypY/SV9XjwOPd85eBO/o/kiSpF83eC2VY7GgHy3WVts+P0ktSowxwSWqUAS5JjbID38R2Olp7c0nD4A5ckhplgEtSowxwSWqUHfgAbKX7ti+XtF3uwCWpUQa4JDXKCmXErE4Gz5pKk8oduCQ1ygCXpEYZ4JLUKDvwPrNvHT/+u9CkcgcuSY0ywCWpUQa4JDXKDrxHvXbb9q2ShsUduCQ1ygCXpEYZ4JLUKDvwHtlta1z52YPp5Q5ckhplgEtSowxwSWqUHfiA2EtqWDzHppc7cElqlAEuSY3aNMCTXJvkm0m+k+TZJJ/tju9JcibJxe5x9+DHlSRd0UsH/r/A+6vqtSTXAE8k+VfgI8DZqnooyTHgGPCpAc7alEnsJe31pfGy6Q68lr3Wvbym+1XAIWC+Oz4PHB7EgJKk9fXUgSfZleRp4DJwpqqeBPZV1SJA97j3Kt97NMlCkoWlpaU+jS1J6inAq+qNqroZOADcmuS9vb5BVZ2oqtmqmp2ZmdnmmJKk1bZ0HXhV/STJ48BdwKUk+6tqMcl+lnfnGgOD6qrtvqXx0stVKDNJ3t09fxvwAeA54DQw133ZHHBqQDNKktbRyw58PzCfZBfLgX+yqh5Lcg44meR+4AXgngHOKUlaZdMAr6rvAresc/xl4I5BDCVJ2lwT90Lx+uOtcZ2k6eBH6SWpUQa4JDWqiQplWisBqyNJG3EHLkmNMsAlqVEGuCQ1qokOfFrZfW+fPz/QNHAHLkmNMsAlqVEGuCQ1yg58Atn/Tvc/u6aHO3BJapQBLkmNMsAlqVF24BPI/lcaL4P6uZQ7cElqlAEuSY0ywCWpUXbgY8Trt6XJNKj/pt2BS1KjDHBJapQBLkmNsgMfI3bfkrbCHbgkNcoAl6RGGeCS1CgDXJIaZYBLUqM2DfAkNyT5RpILSZ5N8mB3fE+SM0kudo+7Bz+uJOmKXnbgrwN/WlW/Afw28MdJbgKOAWer6kbgbPdakjQkmwZ4VS1W1VPd81eBC8D1wCFgvvuyeeDwgGaUmnXk+Lm37nEj9duWOvAkB4FbgCeBfVW1CMshD+zt+3SSpKvqOcCTvAN4FPhEVf10C993NMlCkoWlpaXtzChJWkeqavMvSq4BHgO+VlWf6459H3hfVS0m2Q88XlXv2ejPmZ2drYWFhT6M3RZvEytpJ5Kcr6rZ1cd7uQolwBeBC1fCu3MamOuezwGn+jGoJKk3vdzM6nbgD4HvJXm6O/YZ4CHgZJL7gReAewYyoSRpXZsGeFU9AeQqv31Hf8eRJPXK28kOwTh03/bw0uTxo/SS1CgDXJIaZYBLUqPswBuykx7b7luaPO7AJalRBrgkNcoAl6RG2YGPsdWdtz22pJXcgUtSowxwSWqUAS5JjbIDH2OrO2/vZyJpJXfgktQoA1ySGmWAS1Kj7MC3YVRdtN23pJXcgUtSowxwSWqUAS5JjbID34atdtFevy1pENyBS1KjDHBJapQBLkmNsgNfZRB9td23pEFwBy5JjTLAJalRBvgKXu4nqSUGuCQ1ygCXpEZtGuBJHk5yOckzK47tSXImycXucfdgx5QkrdbLDvzvgbtWHTsGnK2qG4Gz3evmPfLAbTvqv48cP/dWjy5Jg7ZpgFfVfwCvrDp8CJjvns8Dh/s7liRpM9vtwPdV1SJA97j3al+Y5GiShSQLS0tL23w7SdJqA/8hZlWdqKrZqpqdmZkZ9NtJ0tTY7kfpLyXZX1WLSfYDl/s51Cj04xpwrx+XNEzb3YGfBua653PAqf6MI0nqVS+XEf4zcA54T5IXk9wPPATcmeQicGf3WpI0RJtWKFV131V+644+zyJJ2gJvJ9vpZ3/tPVUkDYMfpZekRhngktQoA1ySGjXVHfigumq7b0nD4A5ckhplgEtSowxwSWpUUx14vztru2pJLXMHLkmNMsAlqVEGuCQ1qqkO3M66Td4bRhoMd+CS1CgDXJIaZYBLUqOa6sDHnV3v+lwPaTDcgUtSowxwSWqUFco2XK0qsSqQNEzuwCWpUQa4JDXKAJekRtmBb4Ndt6Rx4A5ckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNWpHAZ7kriTfT/KDJMf6NZQkaXPbDvAku4C/AX4fuAm4L8lN/RpsUhw5fu6te6dIUj/tZAd+K/CDqvphVf0f8GXgUH/GkiRtZicBfj3wXytev9gd+zlJjiZZSLKwtLS0g7eTJK20kwDPOsdqzYGqE1U1W1WzMzMzO3g7SdJKO7kXyovADSteHwBe2tk4k8f7pkgalJ3swL8F3Jjk15L8EnAvcLo/Y0mSNrPtHXhVvZ7k48DXgF3Aw1X1bN8mkyRtaEe3k62qrwJf7dMskqQt8JOYktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEalas39pwb3ZskS8KOhveHPXAf8eATvO65cj7Vck7Vck7VGtSa/WlVr7gY41AAflSQLVTU76jnGheuxlmuylmuy1ritiRWKJDXKAJekRk1LgJ8Y9QBjxvVYyzVZyzVZa6zWZCo6cEmaRNOyA5ekiWOAS1KjJirAk9yQ5BtJLiR5NsmD3fE9Sc4kudg97h71rMOywZr8eZL/TvJ09+uDo551WJJcm+SbSb7Trclnu+NTeZ5ssB5Te45ckWRXkm8neax7PVbnyER14En2A/ur6qkk7wTOA4eBPwJeqaqHkhwDdlfVp0Y36fBssCYfBV6rqr8a5XyjkCTA26vqtSTXAE8ADwIfYQrPkw3W4y6m9By5IsmfALPAu6rq7iR/yRidIxO1A6+qxap6qnv+KnABuB44BMx3XzbPcoBNhQ3WZGrVste6l9d0v4opPU82WI+pluQA8CHgCysOj9U5MlEBvlKSg8AtwJPAvqpahOVAA/aOcLSRWbUmAB9P8t0kD4/6r4LD1v3V+GngMnCmqqb6PLnKesAUnyPA54FPAm+uODZW58hEBniSdwCPAp+oqp+Oep5xsM6a/C3w68DNwCLw16Obbviq6o2quhk4ANya5L0jHmmkrrIeU3uOJLkbuFxV50c9y0YmLsC7Du9R4B+r6l+6w5e6LvhKJ3x5VPONwnprUlWXuv9o3wT+Drh1lDOOSlX9BHic5b53qs8T+Pn1mPJz5Hbgw0meB74MvD/Jlxizc2SiArz7YcwXgQtV9bkVv3UamOuezwGnhj3bqFxtTa6chJ0/AJ4Z9myjkmQmybu7528DPgA8x5SeJ1dbj2k+R6rq01V1oKoOAvcCX6+qjzFm58ikXYXyO8B/At/jZ73VZ1jufE8CvwK8ANxTVa+MZMgh22BN7mP5r8YFPA88cKXbm3RJfpPlH0DtYnkTc7Kq/iLJLzOF58kG6/EPTOk5slKS9wF/1l2FMlbnyEQFuCRNk4mqUCRpmhjgktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVH/D3uAPOQwCRMnAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#from models import Model, SynapticConductanceModel\n", "from brian2 import *\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "\n", "model = SynapticConductanceModel(resistance=Model.LOW, # Model.LOW, Model.HIGH\n", " noise=Model.OFF, n=50, # Model.OFF, Model.LOW, Model,HIGH\n", " offset=SynapticConductanceModel.ACTIVE)\n", "\n", "\n", "# model = SineModel(resistance=Model.LOW, # Model.LOW, Model.HIGH\n", "# noise=Model.OFF, n=1, # Model.OFF, Model.LOW, Model,HIGH\n", "# )\n", "\n", "\n", "model.f = 400 * Hz\n", "model.set_stimulus_current(400 * nS) # current should be scaled by 100x for Active Offset so (500nS is actually 5nS)\n", "model._set_variable(\"i_injected\", 65 * pA)\n", "\n", "\n", "model.run(12*second)\n", "\n", "spike_times = [s/ms for s in model.spike_train.values()]\n", "\n", "plt.eventplot(spike_times)\n" ] }, { "cell_type": "code", "execution_count": 3, "id": "7f22e21e", "metadata": {}, "outputs": [], "source": [ "#print(spike_times)" ] }, { "cell_type": "code", "execution_count": 4, "id": "20e3191c", "metadata": {}, "outputs": [], "source": [ "import scipy.io\n", "import numpy as np\n", "\n", "\n", "file_path = 'data0.mat'\n", "scipy.io.savemat(file_path, {'data0': spike_times[0]})\n", "\n", "file_path = 'data1.mat'\n", "scipy.io.savemat(file_path, {'data1': spike_times[1]})\n", "\n", "file_path = 'data2.mat'\n", "scipy.io.savemat(file_path, {'data2': spike_times[2]})\n", "\n", "file_path = 'data3.mat'\n", "scipy.io.savemat(file_path, {'data3': spike_times[3]})\n", "\n", "file_path = 'data4.mat'\n", "scipy.io.savemat(file_path, {'data4': spike_times[4]})\n", "\n", "file_path = 'data5.mat'\n", "scipy.io.savemat(file_path, {'data5': spike_times[5]})\n", "\n", "file_path = 'data6.mat'\n", "scipy.io.savemat(file_path, {'data6': spike_times[6]})\n", "\n", "file_path = 'data7.mat'\n", "scipy.io.savemat(file_path, {'data7': spike_times[7]})\n", "\n", "file_path = 'data8.mat'\n", "scipy.io.savemat(file_path, {'data8': spike_times[8]})\n", "\n", "file_path = 'data9.mat'\n", "scipy.io.savemat(file_path, {'data9': spike_times[9]})\n", "\n", "file_path = 'data10.mat'\n", "scipy.io.savemat(file_path, {'data10': spike_times[10]})\n", "\n", "file_path = 'data11.mat'\n", "scipy.io.savemat(file_path, {'data11': spike_times[11]})\n", "\n", "file_path = 'data12.mat'\n", "scipy.io.savemat(file_path, {'data12': spike_times[12]})\n", "\n", "file_path = 'data13.mat'\n", "scipy.io.savemat(file_path, {'data13': spike_times[13]})\n", "\n", "file_path = 'data14.mat'\n", "scipy.io.savemat(file_path, {'data14': spike_times[14]})\n", "\n", "file_path = 'data15.mat'\n", "scipy.io.savemat(file_path, {'data15': spike_times[15]})\n", "\n", "file_path = 'data16.mat'\n", "scipy.io.savemat(file_path, {'data16': spike_times[16]})\n", "\n", "file_path = 'data17.mat'\n", "scipy.io.savemat(file_path, {'data17': spike_times[17]})\n", "\n", "file_path = 'data18.mat'\n", "scipy.io.savemat(file_path, {'data18': spike_times[18]})\n", "\n", "file_path = 'data19.mat'\n", "scipy.io.savemat(file_path, {'data19': spike_times[19]})\n", "\n", "file_path = 'data20.mat'\n", "scipy.io.savemat(file_path, {'data20': spike_times[20]})\n", "\n", "file_path = 'data21.mat'\n", "scipy.io.savemat(file_path, {'data21': spike_times[21]})\n", "\n", "file_path = 'data22.mat'\n", "scipy.io.savemat(file_path, {'data22': spike_times[22]})\n", "\n", "file_path = 'data23.mat'\n", "scipy.io.savemat(file_path, {'data23': spike_times[23]})\n", "\n", "file_path = 'data24.mat'\n", "scipy.io.savemat(file_path, {'data24': spike_times[24]})\n", "\n", "file_path = 'data25.mat'\n", "scipy.io.savemat(file_path, {'data25': spike_times[25]})\n", "\n", "file_path = 'data26.mat'\n", "scipy.io.savemat(file_path, {'data26': spike_times[26]})\n", "\n", "file_path = 'data27.mat'\n", "scipy.io.savemat(file_path, {'data27': spike_times[27]})\n", "\n", "file_path = 'data28.mat'\n", "scipy.io.savemat(file_path, {'data28': spike_times[28]})\n", "\n", "file_path = 'data29.mat'\n", "scipy.io.savemat(file_path, {'data29': spike_times[29]})\n", "\n", "file_path = 'data30.mat'\n", "scipy.io.savemat(file_path, {'data30': spike_times[30]})\n", "\n", "file_path = 'data31.mat'\n", "scipy.io.savemat(file_path, {'data31': spike_times[31]})\n", "\n", "file_path = 'data32.mat'\n", "scipy.io.savemat(file_path, {'data32': spike_times[32]})\n", "\n", "file_path = 'data33.mat'\n", "scipy.io.savemat(file_path, {'data33': spike_times[33]})\n", "\n", "file_path = 'data34.mat'\n", "scipy.io.savemat(file_path, {'data34': spike_times[34]})\n", "\n", "file_path = 'data35.mat'\n", "scipy.io.savemat(file_path, {'data35': spike_times[35]})\n", "\n", "file_path = 'data36.mat'\n", "scipy.io.savemat(file_path, {'data36': spike_times[36]})\n", "\n", "file_path = 'data37.mat'\n", "scipy.io.savemat(file_path, {'data37': spike_times[37]})\n", "\n", "file_path = 'data38.mat'\n", "scipy.io.savemat(file_path, {'data38': spike_times[38]})\n", "\n", "file_path = 'data39.mat'\n", "scipy.io.savemat(file_path, {'data39': spike_times[39]})\n", "\n", "file_path = 'data40.mat'\n", "scipy.io.savemat(file_path, {'data40': spike_times[40]})\n", "\n", "file_path = 'data41.mat'\n", "scipy.io.savemat(file_path, {'data41': spike_times[41]})\n", "\n", "file_path = 'data42.mat'\n", "scipy.io.savemat(file_path, {'data42': spike_times[42]})\n", "\n", "file_path = 'data43.mat'\n", "scipy.io.savemat(file_path, {'data43': spike_times[43]})\n", "\n", "file_path = 'data44.mat'\n", "scipy.io.savemat(file_path, {'data44': spike_times[44]})\n", "\n", "file_path = 'data45.mat'\n", "scipy.io.savemat(file_path, {'data45': spike_times[45]})\n", "\n", "file_path = 'data46.mat'\n", "scipy.io.savemat(file_path, {'data46': spike_times[46]})\n", "\n", "file_path = 'data47.mat'\n", "scipy.io.savemat(file_path, {'data47': spike_times[47]})\n", "\n", "file_path = 'data48.mat'\n", "scipy.io.savemat(file_path, {'data48': spike_times[48]})\n", "\n", "file_path = 'data49.mat'\n", "scipy.io.savemat(file_path, {'data49': spike_times[49]})\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "d353eff4", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 5 }