{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "0b85a598",
   "metadata": {},
   "outputs": [],
   "source": [
    "from brian2 import *\n",
    "\n",
    "from adex_sine import *\n",
    "\n",
    "defaultclock.dt = 10 * us\n",
    "\n",
    "\n",
    "class Model:\n",
    "    # Model type flags\n",
    "    SINE = 0\n",
    "    EXP2SYN = 1\n",
    "\n",
    "    # Noise flags\n",
    "    HIGH = 0\n",
    "    LOW = 1\n",
    "    OFF = -1\n",
    "\n",
    "    # Noise parameters\n",
    "    EXCITATORY_NOISE_VARIANCE = {HIGH: 0.5 * nS, LOW: 0.25 * nS, OFF: 0 * nS}\n",
    "    INHIBITORY_NOISE_VARIANCE = {HIGH: 1.25 * nS, LOW: 0.625 * nS, OFF: 0 * nS}\n",
    "\n",
    "    # Noise mean conductance\n",
    "    EXCITATORY_CONDUCTANCE = 1 * nS\n",
    "    INHIBITORY_CONDUCTANCE = 4 * nS\n",
    "\n",
    "    DEFAULT_PARAMETERS = {\n",
    "        \"sigma_flux\" : 6.75*pA,     \n",
    "        \"c\": 85 * pF,\n",
    "        \"tau_w\": 18 * ms,\n",
    "        \"b\": 0.25 * nA,\n",
    "        \"a\": 1.3 * nS,\n",
    "        \"v_T\": -45 * mV,\n",
    "        \"v_thresh\": 0 * mV,\n",
    "        \"DeltaT\": 0.2 * mV,\n",
    "        # EQUILIBRIUM POTENTIAL\n",
    "        \"e_l\": -65 * mV,\n",
    "        \"e_ex\": 0 * mV,\n",
    "        \"e_in\": -70 * mV,\n",
    "        # CONDUCTANCES\n",
    "        \"g_l\": 3 * nS,\n",
    "        \"mu_ex\": 0 * nS,\n",
    "        \"mu_in\": 0 * nS,\n",
    "        # EXCITATORY NOISE\n",
    "        \"sigma_ex\": 0 * nS,\n",
    "        \"tau_noise_ex\": 3 * ms,\n",
    "        # INHIBITORY NOISE\n",
    "        \"sigma_in\": 0 * nS,\n",
    "        \"tau_noise_in\": 10 * ms,\n",
    "        # SINE INPUT\n",
    "        \"f\": 100 * Hz,\n",
    "        \"A\": 0 * pA,\n",
    "        \"i_injected\": 0 * pA,\n",
    "        \"v_reset\": -70 * mV,\n",
    "        # m current\n",
    "        \"g_adapt\": 10 * nS,\n",
    "        \"e_k\": -90*mV,\n",
    "        \"beta_z\": -35*mV,\n",
    "        \"gamma_z\": 4*mV,     #5\n",
    "        \"tau_z\": 100*ms,\n",
    "    }\n",
    "\n",
    "    def __init__(\n",
    "        self, n, *, stim=None, noise=None, resistance=None, additional_vars=()\n",
    "    ):\n",
    "        if resistance is None:\n",
    "            raise ValueError(\"Resistance must be specified\")\n",
    "\n",
    "        if noise is None:\n",
    "            raise ValueError(\"Noise must be specified\")\n",
    "\n",
    "        self.stim_type = stim\n",
    "        self._input_resistance = None\n",
    "        self._noise_level = None\n",
    "        self._duration = 0\n",
    "        self.recorded_vars = (\"v\",) + additional_vars\n",
    "\n",
    "        self.neurons = self.set_default(n_neuron=n)\n",
    "        self.set_resistance(resistance)\n",
    "        self.set_noise(noise)\n",
    "\n",
    "        self.spikes = None\n",
    "        self.spiker = None\n",
    "        self.synapses = None\n",
    "        self.inhib_synapses = None\n",
    "        self.smon = None\n",
    "        self.network = None\n",
    "        self.build_network()\n",
    "\n",
    "    def create_model(self):\n",
    "        return ADEX_MODEL, self.DEFAULT_PARAMETERS\n",
    "\n",
    "    def set_default(self, n_neuron):\n",
    "        model, parameters = self.create_model()\n",
    "\n",
    "        neurons = NeuronGroup(\n",
    "            n_neuron,\n",
    "            model=model,\n",
    "            method=\"Euler\",\n",
    "            name=\"neurons\",\n",
    "            threshold=\"v > v_thresh\",\n",
    "            reset=\"v = v_reset; w += b\",\n",
    "        )\n",
    "\n",
    "        for parameter, value in parameters.items():\n",
    "            neurons.__setattr__(parameter, value)\n",
    "\n",
    "        neurons.v = neurons.e_l  # remove most of transient\n",
    "\n",
    "        return neurons\n",
    "\n",
    "    def set_resistance(self, level):\n",
    "        if level == self.LOW:\n",
    "            exc_conductance = self.EXCITATORY_CONDUCTANCE\n",
    "            inhib_conductance = self.INHIBITORY_CONDUCTANCE\n",
    "\n",
    "        else:\n",
    "            exc_conductance = inhib_conductance = 0\n",
    "\n",
    "        self._input_resistance = level\n",
    "        self._set_variable(\"mu_ex\", exc_conductance)\n",
    "        self._set_variable(\"mu_in\", inhib_conductance)\n",
    "\n",
    "    def set_noise(self, level):\n",
    "        if level == self.HIGH or level == self.LOW:\n",
    "            exc_noise = self.EXCITATORY_NOISE_VARIANCE[level]\n",
    "            inhib_noise = self.INHIBITORY_NOISE_VARIANCE[level]\n",
    "\n",
    "        else:\n",
    "            exc_noise = inhib_noise = 0\n",
    "\n",
    "        self._noise_level = level\n",
    "        self._set_variable(\"sigma_ex\", exc_noise)\n",
    "        self._set_variable(\"sigma_in\", inhib_noise)\n",
    "\n",
    "    def set_injected_current(self, amplitude):\n",
    "        self._set_variable(\"i_injected\", amplitude)\n",
    "        self._set_variable(\"A\", 0 * pA)\n",
    "\n",
    "    def set_stimulus_current(self, amplitude):\n",
    "        self._set_variable(\"A\", amplitude)\n",
    "        self._set_variable(\"i_injected\", 0 * pA)\n",
    "\n",
    "    @property\n",
    "    def f(self):\n",
    "        return self.neurons.f\n",
    "\n",
    "    @f.setter\n",
    "    def f(self, new_f):\n",
    "        self._set_variable(\"f\", new_f)  # this will reset smon\n",
    "        if self.stim_type == self.EXP2SYN:\n",
    "            self.spiker.T = 1 / new_f\n",
    "\n",
    "    def run(self, duration, report=\"stdout\"):\n",
    "        self._duration = duration\n",
    "        self.network.run(duration, report=report)\n",
    "\n",
    "    def build_network(self):\n",
    "        self.smon = StateMonitor(\n",
    "            self.neurons, self.recorded_vars, record=True, name=\"smon\"\n",
    "        )\n",
    "        self.spikes = SpikeMonitor(self.neurons, name=\"spikes\")\n",
    "\n",
    "        self.network = Network(self.neurons, self.smon, self.spikes)\n",
    "\n",
    "    def _set_variable(self, name, value):\n",
    "        self.neurons.__setattr__(name, value)\n",
    "        self.reset_recording()\n",
    "\n",
    "    def reset_recording(self):\n",
    "        try:\n",
    "            self.network\n",
    "        except AttributeError:\n",
    "            return  # network not yet initialized\n",
    "\n",
    "        self.network.remove(self.smon, self.spikes)\n",
    "\n",
    "        self.smon = StateMonitor(\n",
    "            self.neurons, self.recorded_vars, record=True, name=\"smon\"\n",
    "        )\n",
    "        self.spikes = SpikeMonitor(self.neurons, name=\"spikes\")\n",
    "\n",
    "        self.network.add(self.smon, self.spikes)\n",
    "\n",
    "    @property\n",
    "    def spike_train(self):\n",
    "        return self.spikes.spike_trains()\n",
    "\n",
    "    @property\n",
    "    def firing_rate(self):\n",
    "        return self.spikes.count / self.duration\n",
    "\n",
    "    @property\n",
    "    def duration(self):\n",
    "        return self._duration\n",
    "\n",
    "    @property\n",
    "    def input_resistance(self):\n",
    "        if self._input_resistance == self.HIGH:\n",
    "            return \"HIGH\"\n",
    "        else:\n",
    "            return \"LOW\"\n",
    "\n",
    "    @property\n",
    "    def noise_level(self):\n",
    "        if self._noise_level == self.HIGH:\n",
    "            return \"HIGH\"\n",
    "        elif self._noise_level == self.LOW:\n",
    "            return \"LOW\"\n",
    "        else:\n",
    "            return \"NO\"\n",
    "\n",
    "    def __repr__(self):\n",
    "        return f\"{self.neurons.N} Neurons with {self.input_resistance} input resistance and {self.noise_level} noise\"\n",
    "\n",
    "    def __str__(self):\n",
    "        return self.__repr__()\n",
    "\n",
    "    def store(self, name):\n",
    "        self.network.store(name)\n",
    "\n",
    "    def restore(self, name):\n",
    "        self.network.restore(name)\n",
    "\n",
    "    @property\n",
    "    def v(self):\n",
    "        return self.smon.v\n",
    "\n",
    "    @property\n",
    "    def t(self):\n",
    "        return self.smon.t\n",
    "\n",
    "    @property\n",
    "    def injected_current(self):\n",
    "        return self.neurons.i_injected\n",
    "\n",
    "    @property\n",
    "    def stimulus_amplitude(self):\n",
    "        return self.neurons.A\n",
    "\n",
    "\n",
    "class CurrentModel(Model):\n",
    "    def __init__(self, **kwargs):\n",
    "        super().__init__(stim=self.SINE, **kwargs)\n",
    "\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += CURRENT_INPUT\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "\n",
    "class SineModel(CurrentModel):\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += SINE_INPUT\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "\n",
    "class SawModel(CurrentModel):\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += SAW_INPUT\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "\n",
    "class SynapticModel(Model):\n",
    "    def __init__(self, **kwargs):\n",
    "        super().__init__(stim=self.EXP2SYN, **kwargs)\n",
    "\n",
    "    SYNAPTIC_PARAMETERS = {\n",
    "        \"tau_input_1\": 0.4 * ms,\n",
    "        \"tau_input_2\": 4 * ms,\n",
    "        \"offset_A\": 1.48793507e-11,\n",
    "        \"offset_B\": -2.66359562e-08,\n",
    "        \"offset_C\": 1.77538800e-05,\n",
    "        \"offset_D\": -8.05925810e-04,\n",
    "        \"offset_E\": -3.51463644e-02,\n",
    "        \"offset_switch\": 0,\n",
    "    }\n",
    "\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += EXP2SYN_WAVEFORM + SUMMATION_OFFSET\n",
    "        parameters = {**parameters, **self.SYNAPTIC_PARAMETERS}\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "    def build_network(self):\n",
    "        super().build_network()\n",
    "        self.spiker = NeuronGroup(\n",
    "            self.neurons.N,\n",
    "            \"\"\"T : second (constant)\n",
    "                                     lastspike : second\"\"\",\n",
    "            threshold=\"timestep(t-lastspike, dt)>=timestep(T, dt)\",\n",
    "            reset=\"lastspike=t\",\n",
    "        )\n",
    "        self.spiker.T = 1 / self.neurons.f\n",
    "        self.synapses = Synapses(\n",
    "            self.spiker, self.neurons, on_pre=\"input_aux += 1\"\n",
    "        )  # connect input to neurons\n",
    "        self.synapses.connect(\"i==j\")  # one synapse goes to one neuron\n",
    "\n",
    "        self.network.add(self.spiker, self.synapses)\n",
    "\n",
    "\n",
    "class SynapticCurrentModel(SynapticModel):\n",
    "    def __init__(self, offset=True, **kwargs):\n",
    "        self.offset = 1 if offset else 0\n",
    "        super().__init__(**kwargs)\n",
    "\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += CURRENT_INPUT + SYNAPTIC_INPUT_CURRENT\n",
    "        parameters = {**parameters, **{\"offset_switch\": self.offset}}\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "\n",
    "class SynapticConductanceModel(SynapticModel):\n",
    "    FLAT = 0\n",
    "    ACTIVE = 1\n",
    "\n",
    "    CONDUCTANCE_PARAMETERS = {\n",
    "        \"A\": 0 * nS,  # overwrite A to be conductance\n",
    "        \"g_i\": 1 * nS,\n",
    "    }\n",
    "\n",
    "    INHIBITION_PARAMETERS = {\n",
    "        \"tau_inhibition_1\": 1 * ms,\n",
    "        \"tau_inhibition_2\": 10 * ms,\n",
    "    }\n",
    "\n",
    "    def __init__(self, offset=ACTIVE, **kwargs):\n",
    "        self.offset = offset\n",
    "        super().__init__(**kwargs)\n",
    "\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        if self.offset == self.FLAT:\n",
    "            model += CONDUCTANCE_INPUT + SYNAPTIC_CONDUCTANCE_FLAT\n",
    "            parameters = {\n",
    "                **parameters,\n",
    "                **self.SYNAPTIC_PARAMETERS,\n",
    "                **self.CONDUCTANCE_PARAMETERS,\n",
    "                **{\"offset_switch\": 1},\n",
    "            }\n",
    "\n",
    "        elif self.offset == self.ACTIVE:\n",
    "            model += CONDUCTANCE_INPUT + SYNAPTIC_CONDUCTANCE_STIM\n",
    "            parameters = {\n",
    "                **parameters,\n",
    "                **self.SYNAPTIC_PARAMETERS,\n",
    "                **self.CONDUCTANCE_PARAMETERS,\n",
    "                **self.INHIBITION_PARAMETERS,\n",
    "            }\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "    def build_network(self):\n",
    "        super().build_network()\n",
    "        if self.offset != self.ACTIVE:\n",
    "            return\n",
    "\n",
    "        self.inhib_synapses = Synapses(\n",
    "            self.spiker, self.neurons, on_pre=\"input_inhib_aux += 1\", delay=2 * ms\n",
    "        )  # connect input to neurons\n",
    "        self.inhib_synapses.connect(\"i==j\")  # one synapse goes to one neuron\n",
    "\n",
    "        self.network.add(self.inhib_synapses)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "c82769f2",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING    Cannot use Cython, a test compilation failed: Microsoft Visual C++ 14.0 or greater is required. Get it with \"Microsoft C++ Build Tools\": https://visualstudio.microsoft.com/visual-cpp-build-tools/ (DistutilsPlatformError) [brian2.codegen.runtime.cython_rt.cython_rt.failed_compile_test]\n",
      "INFO       Cannot use compiled code, falling back to the numpy code generation target. Note that this will likely be slower than using compiled code. Set the code generation to numpy manually to avoid this message:\n",
      "prefs.codegen.target = \"numpy\" [brian2.devices.device.codegen_fallback]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Starting simulation at t=0. s for a duration of 12. s\n",
      "0.58298 s (4%) simulated in 10s, estimated 3m 16s remaining.\n",
      "1.17568 s (9%) simulated in 20s, estimated 3m 4s remaining.\n",
      "1.71267 s (14%) simulated in 30s, estimated 3m 0s remaining.\n",
      "2.22858 s (18%) simulated in 40s, estimated 2m 55s remaining.\n",
      "2.76109 s (23%) simulated in 50s, estimated 2m 47s remaining.\n",
      "3.29295 s (27%) simulated in 1m 0s, estimated 2m 39s remaining.\n",
      "3.82527 s (31%) simulated in 1m 10s, estimated 2m 30s remaining.\n",
      "4.36103 s (36%) simulated in 1m 20s, estimated 2m 20s remaining.\n",
      "4.89228 s (40%) simulated in 1m 30s, estimated 2m 11s remaining.\n",
      "5.42064 s (45%) simulated in 1m 40s, estimated 2m 1s remaining.\n",
      "5.95234 s (49%) simulated in 1m 50s, estimated 1m 52s remaining.\n",
      "6.48263 s (54%) simulated in 2m 0s, estimated 1m 42s remaining.\n",
      "7.01304 s (58%) simulated in 2m 10s, estimated 1m 32s remaining.\n",
      "7.54574 s (62%) simulated in 2m 20s, estimated 1m 23s remaining.\n",
      "8.07494 s (67%) simulated in 2m 30s, estimated 1m 13s remaining.\n",
      "8.60076 s (71%) simulated in 2m 40s, estimated 1m 3s remaining.\n",
      "9.13202 s (76%) simulated in 2m 50s, estimated 53s remaining.\n",
      "9.65847 s (80%) simulated in 3m 0s, estimated 44s remaining.\n",
      "10.18788 s (84%) simulated in 3m 10s, estimated 34s remaining.\n",
      "10.71153 s (89%) simulated in 3m 20s, estimated 24s remaining.\n",
      "11.2402 s (93%) simulated in 3m 30s, estimated 14s remaining.\n",
      "11.7538 s (97%) simulated in 3m 40s, estimated 5s remaining.\n",
      "12. s (100%) simulated in 3m 44s\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[<matplotlib.collections.EventCollection at 0x1c12b00f8b0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b01e130>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b01e910>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b025190>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b025a60>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b02f280>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b02fb50>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b6c6490>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b6c6df0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b6d06a0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b6d0f70>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b6d69a0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b6df310>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b6dfc40>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b6e7490>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b6e7cd0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b6f1640>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b6f1fa0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b6f8a00>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b7000d0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b7007f0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b7071f0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b707ac0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b70e3a0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b70eee0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b718670>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b718e80>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b71f4c0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b71fdc0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b729640>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b72f100>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b72f7f0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b737280>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b737a30>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b7401f0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b740ac0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b7492b0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b749c40>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b753460>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b753c70>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b75a4c0>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b75ad90>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b762580>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b762e50>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b76c490>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b76cd00>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b774490>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b774d30>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b77e460>,\n",
       " <matplotlib.collections.EventCollection at 0x1c12b77ec70>]"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD4CAYAAAAaT9YAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAYEklEQVR4nO3dbaxlV13H8d/PTqFYqJ2x02ZsiVOSpnFCIsUroWJIpRRQG1qN2BLBMVZroiYgJnQqL5RXFDSEGBJpA5hReWjlwU4aFJpCY0ia0tvw1KdhylOpXJkLNRTwhRT+vrh7w+FyztlPa+2z1+H7SSb3nH32Xnutc879Z+5vr7OOI0IAgDL91Ko7AADojyIOAAWjiANAwSjiAFAwijgAFGzPmCc766yz4uDBg2OeEgCKd++99349IvbPe2zUIn7w4EFtbm6OeUoAKJ7tLy96jDgFAApGEQeAglHEAaBgFHEAKBhFHAAK1mp2iu0vSfqWpO9JeiIiNmzvk3SzpIOSviTpdyPif/J0EwAwT5f/if9aRDwrIjaq+0ck3RERF0i6o7oPABjRkDjlCklHq9tHJV05uDcAgE7aFvGQ9BHb99q+ttp2TkRsSVL18+x5B9q+1vam7c3t7e3hPQYA/EDbT2w+LyK+avtsSbfbfqjtCSLiJkk3SdLGxgbfQAEACbUq4hHx1ernSdsflPQcSV+zfSAitmwfkHQyVyevuvEuSdLNf3Lx3G1Njy9qrzZvn5yW9S3lMUM1Pccp2m2zvc9ju7d1GUvX91OToc/dmK99m3O1ef36vpYpHm/aZ9l7o6mt3bWjNnYNmdUYp9g+3fbT6tuSXiTpPknHJB2udjss6dZcnQQAzNfmf+LnSPqg7Xr/d0fEf9i+R9Ittq+R9Iikl+XrJgBgnsYiHhFfkPSLc7Z/Q9KlOToFAGjHY37b/cbGRvRZijZXNjuv/VTHdm1zUU5X69q33M9ZKn371jUH79uv2tDXt825ppJ5j6VtFl3r+17uckzKLL3P+Rexfe/MZ3R+BB+7B4CCUcQBoGAUcQAoWHGZ+Oz93drOG111rj6VXDJnP9ZljFfdeJce2Hpchw6csfL8e6zndOg87GX7pmh7Ku+t3XL2i0wcANYURRwACkYRB4CCFZ2JD13fIfU5u/ala59Sn3fefm3GPdV5zcvWuEiV7459zO5jaynel8vOs4q8OeV1q2Xv21rqaxxk4gCAzijiAFAwijgAFKyITFwaP6sburZ1bUh/x8qjU+S7Q9aPHkOqPgxZizpl31Kt2VOaFONrc+1kamsPkYkDwJqiiANAwSjiAFCwYjPxKWXkU7fKta9znbsps0y5ls2q2hp6bFNuXku5JnuqawBjX/tpGnef91vKMZCJA8CaoogDQMGKiVNWpcQYJcdHlnOcJ3V/Up+j7Z/fuaYvdj2mawQwVh9LOl8qqftNnAIAa4oiDgAFo4gDQMGKycSn8LHuHNPH+kxf261vdt12PG3PN2R6Wt/ndqz8P6VUWfXYX6839H2U4nc3xftgjOnKZOIAgFYo4gBQMIo4ABSsiEx81V9ftnv/WslzZcdcyjTHR7lzZMlTWH50KssazN6vpXj++7SZevnZlO2OhUwcANYURRwACta6iNs+xfYnbd9W3d9n+3bbJ6qfe/N1EwAwT+tM3PZrJG1IOiMiLrf9JkmPRcQNto9I2hsR1y1rYyqZ+FQytqnOER5yvtTLjObMMrvMb07V59qyrwZr2782Vj0Pft722qLXNOdyvm3aS/VeT3kNbXAmbvs8Sb8p6e0zm6+QdLS6fVTSlb17CADopW2c8hZJr5X0/Zlt50TEliRVP8+ed6Dta21v2t7c3t4e0lcAwC6NRdz25ZJORsS9fU4QETdFxEZEbOzfv79PEwCABRozcdtvkPRKSU9IOk3SGZI+IOmXJV0SEVu2D0i6MyIuXNZWiky8zZrJtT7zfa+68S49sPW4Dh04ozHT7NLvdTe19aqn0k7qfDXHfPDcxy1ro0t+nqrfU7zG1mRQJh4R10fEeRFxUNLVkj4aEa+QdEzS4Wq3w5JuTdRfAEBLQ+aJ3yDpMtsnJF1W3QcAjGhPl50j4k5Jd1a3vyHp0vRdAgC0tVZrp6ScU9y3rZRzi1Pun6rNLutrtGljCms5tx3DkH5Pab52qv1zGfr+GHue+RjnYO0UAFhTFHEAKBhFHAAKVlQmXkudb+fO4Ib0baiU32+47BzL5tb3XQ9jaLY5lYx3Vq7XNsVc6JzXcPoa+/dxqsjEAWBNUcQBoGAUcQAoWBGZuNSci3fJvZe1P1am2LR/qvUe2j4vtZRz4Lvm8bmzzFVlpX3XLd/92tS6XLsZ+nsxFU1rrDRtH+PaUE5k4gCwpijiAFCwIuKUtl/rtGpT6ssUtI1tUn6cfVXLrKaeZjrGsW3b67ssbKpleNvoGrcsOr6Wa9navohTAGBNUcQBoGAUcQAoWFGZeN+8q0v7Y2ZgQ5cTmNdWm+sFOT4Cn1rbPtbG/Oj9KqajDj1u3vFdX+c+U2JrfZ+bMTL/1Mfk6D+ZOACsKYo4ABSMIg4ABSsqE6/lXqJ1bDn7MqVx7rbKudl92s3V37HHMXTfRcfW+rYxu5xx7qWLh2b/tbF+r8jEAWBNUcQBoGAUcQAoWFGZeFP+lXIp2D77L5s/nGp9jJRrVvTtQ1PfamOcP0UbU75ukFLK+e21VTxnffLyEs85i0wcANYURRwACkYRB4CCFZuJL9ve9vgh2uaLfXLxVWa0Kc/ddx3qVOea3Z7zueyz3n3qr65LuXbOsrbbXPep5VgXZsjaL33O3bS9lmLNmGXIxAFgTVHEAaBgjUXc9mm2P2H707bvt/36avs+27fbPlH93Ju/uwCAWY2ZuG1LOj0ivm37VEkfl/QqSb8t6bGIuMH2EUl7I+K6ZW2lzsSXPT7WuhFDjs+RP6f4nsZVZPJTWMN8mSnMj16kz/WZedtrQ65dTP11HGpVYxmUiceOb1d3T63+haQrJB2tth+VdOXwrgIAumiVids+xfanJJ2UdHtE3C3pnIjYkqTq59kLjr3W9qbtze3t7UTdBgBILYt4RHwvIp4l6TxJz7H9zLYniIibImIjIjb279/fs5sAgHk6zxO3/deSviPpjyVdEhFbtg9IujMiLlx2bN9MvNYlu23at2sOPKWsb5Xrq4+R4w/N6BfNJe4zxzh3vpzyekyXvqZcN2VZ+7v3HXL+PlL/3uZ6zzYZlInb3m/7zOr2UyS9UNJDko5JOlztdljSrUl6CwBobU+LfQ5IOmr7FO0U/Vsi4jbbd0m6xfY1kh6R9LKM/QQAzNFYxCPiM5IumrP9G5IuzdEpAEA7Ra+dkkrfNbrXZf7r7vyytqp5403Pdap12pe126Vvqa3q+a4NWV9/6Jz1Lv3c3d8h14qm8FmJZVg7BQDWFEUcAApWRJwiDfuqs7Z/Zk1h+lzbcU7tz71Zqb7KqutzURvynKxy2eI2bdTaRAipXodUUsVgKeO0eW12eazPfn0QpwDAmqKIA0DBKOIAULAiMvEcH5Pd/dgUcq+fVDmf05RfRTa2qWXaQ6Sc/pfrmN3H1qbw/JKJA8CaoogDQMEo4gBQsKIy8VqKpWib9m9zTNt9mvZd1NfabD47u22IXB8xn0KOu85LJLR11Y136YGtx3XowBmTztSHXLPoc/yQc6c+vgsycQBYUxRxACgYRRwAClZUJp7ra6dyWWVf2mbTtSnM0U51bM72U/Rr6HWUNrlwyiVgU0m9Zk6X46b8XmyDTBwA1hRFHAAKRhEHgIIVnYkv26fPHPJa3/VTmubmdsnsxlgnOUcbubLmtutmp5r/3mWd95TrvqeYu9w0P3zZedpsTz2/OsX3A+T63MOy8y7CeuIAgNYo4gBQMIo4ABSs+Ew8V5bc5tzL9pnC3NIx5Fy3earraqTK51PkzGOtxZ56bnvb47rum7seNLWZqxaQiQPAmqKIA0DBKOIAULAiMnGpOZ/rui5DbTY7azO/tsu5hh7Tpc3d/R87Y809r71v1ty1j7muqUhq/f4acp7cnwco5VrPKubu51yPiEwcANZUYxG3/XTbH7P9oO37bb+q2r7P9u22T1Q/9+bvLgBgVpv/iT8h6S8j4hckPVfSn9k+JOmIpDsi4gJJd1T3AQAj6pyJ275V0lurf5dExJbtA5LujIgLlx2bKhNftk/O3LFJyvUlUp0r1RrLKTLpLoZedxhrfvCQHDT1mkBdz5FjXnbbdmqp5vAveu1TXL9q87mAeY+llCwTt31Q0kWS7pZ0TkRsSVL18+yB/QQAdNS6iNt+qqT3S3p1RDze4bhrbW/a3tze3u7TRwDAAq3iFNunSrpN0ocj4s3VtuMaKU5J9afc0PPlbi/lx8RTTYOcwrIGbdroMr0y5xhKmYI3a1XxV6rzp3qPTvm1GxSn2Lakd0h6sC7glWOSDle3D0u6dWhHAQDd7Gmxz/MkvVLSZ21/qtr2V5JukHSL7WskPSLpZVl6CABYqLGIR8THJXnBw5em7Q4AoIsiPnafcrpZyo/Qppii1bWdrqac8/WxyvFMeVniUl7n3MszdD3H2NdP+uJj9wCwpijiAFAwijgAFKyoTLw29te05fiasNRf8bTKr6Ua41xtrmuMNYc9Zebatb1F+7f9+HfXMY2xPG3fpSFSLhtQ6/K8jfWRe4lMHADWFkUcAApGEQeAghWViafKIFOfN3VG23ctjq7HLcr0Un991ZDlcHPMK065VshuuT4HkOt5WtW89rb9ydW/FFl/l7x+aJ/JxAFgTVHEAaBgFHEAKFgRmbiUbk5m26xq1Wss7z6+y1dGpe5fm+doXn+6ZuEpv0orZd495LltaiPnNY8h58rZ3qrXIxky93xVfScTB4A1RREHgIJRxAGgYEVk4jnWLul73qnmirmzuj75+dDMvWufcp1vCtdHhrTX5n286py6Ntbc61TZd9O1oFTIxAFgTVHEAaBgFHEAKFhxmXifLLDWJwPtOt+367mGmEqOKY27fvkYml7PIddLFr2fp/J6XnXjXXpg63EdOnBGlr6M+VmNPu10zcvHeN3IxAFgTVHEAaBgFHEAKFhRmXit7/q+dc7X1M5YhuShQ+e5zj6nqfPPVOuU9z2mj64Zd+51TOblrkNep2Xjq6VcIyZXbpxyPaKSkIkDwJqiiANAwYqKU8aehpX7q8FyT63qY+hSAzk/Ct1XUxQx9pIFY77uXWK1er8cywy0abMp8mkbJ3WtF02/n7VV/p4SpwDAmqKIA0DBGou47XfaPmn7vplt+2zfbvtE9XNv3m4CAOZpzMRtP1/StyX9U0Q8s9r2JkmPRcQNto9I2hsR1zWdLMdStLmWFU2Rw+f4qqe+mXqXvoy19GrKKW6LpuJNYUrZGNcJlr1+Q3Lhrv3v8j5adJ7dUryOqTL6VRmUiUfEf0p6bNfmKyQdrW4flXTlkA4CAPrpm4mfExFbklT9PHvRjravtb1pe3N7e7vn6QAA82S/sBkRN0XERkRs7N+/P/fpAOAnSqt54rYPSrptJhM/LumSiNiyfUDSnRFxYVM7fTNxaVj2nTp7nVJWJuX5Grkxj091zWPotYtaqusNTR9J37296bE2+swLH9pmCmP/To352YAU58oxT/yYpMPV7cOSbu3ZDgBggDZTDN8j6S5JF9p+1PY1km6QdJntE5Iuq+4DAEa2p2mHiHj5gocuTdwXAEBHxa2dMmR7U9td52BPLRtfZGi+2zSfN9U1ht1Sz/1PZay1ZNq0l+O1GdqnNo8PfQ5L+d1LhbVTAGBNUcQBoGAUcQAoWBGZuNQ+i16WGfbNXnOtndL2mCl8tVWued8p89Jc6+ikNtYc/L7z18dYV2i2rTbrhOd4zoasEdPnfEOQiQPAmqKIA0DBKOIAULAiMvGpz83O1aemHG/IGtAp12hve3zT69jmekafcbcZay1HPtpkyOcd2s4LH/M9mnL/XP3I2XaOvpCJA8CaoogDQMEo4gBQsKIy8d1y55V95+OOlae2PW/XNWHanKvvPk36PpdDx5jzGkEbfT8HMXWrur7St60+fRrj9SITB4A1RREHgIJRxAGgYEVl4rnWmkidoY4pVQ69bP2KqYy11nZN7ZRrwedeF7zL40Pel33XkB/L0Nw6x3WZXMd0QSYOAGuKIg4ABVvLOCXFdLkx9k+xX6rpg22WA13W5pjL9XY5PuXUyDGiq7GMOS122RThKUWWQ87XdsmIvohTAGBNUcQBoGAUcQAoWBGZuNRvGlzbZTrnHb+qzDf1FKlVZY452u4zllVfT1kXXX6XhrSfe2rgkOmDtT7LJw9FJg4Aa4oiDgAFo4gDQMGKyMRz53G5zMvHaimWt23aljKT6zqXupbro8up3xNNz1vT+fr0faylbXOayhLGqUypL7PIxAFgTVHEAaBgg4q47ZfYPm77YdtHUnUKANBO70zc9imSPifpMkmPSrpH0ssj4oFFxwyZJy6NlyWmXttits3dUmWJU1pOtI2282unOIZcfeqzpG7K87VtO+UaIyken9o1hhz9yZWJP0fSwxHxhYj4P0nvlXTFgPYAAB0NKeLnSvrKzP1Hq20/wva1tjdtb25vbw84HQBgtyFF3HO2/Vg2ExE3RcRGRGzs379/wOkAALsNycQvlvQ3EfHi6v71khQRb1h0zNBMHAB+EuXKxO+RdIHt820/SdLVko4NaA8A0NGevgdGxBO2/1zShyWdIumdEXF/sp4BABr1LuKSFBEfkvShRH0BAHTEJzYBoGAUcQAoGEUcAApGEQeAglHEAaBgFHEAKBhFHAAKRhEHgIKN+h2btrclfbnn4WdJ+nrC7qzSuoxlXcYhMZapYiw7fj4i5q4gOGoRH8L25qIFYEqzLmNZl3FIjGWqGEsz4hQAKBhFHAAKVlIRv2nVHUhoXcayLuOQGMtUMZYGxWTiAIAfV9L/xAEAu1DEAaBgky/itl9i+7jth20fWXV/5rH9dNsfs/2g7fttv6ravs/27bZPVD/3zhxzfTWm47ZfPLP9l2x/tnrs723P+0Lq3OM5xfYnbd9W+DjOtP0+2w9Vr83FBY/lL6r31n2232P7tFLGYvudtk/avm9mW7K+236y7Zur7XfbPjjyWP62eo99xvYHbZ856lgiYrL/tPO1b5+X9AxJT5L0aUmHVt2vOf08IOnZ1e2nSfqcpEOS3iTpSLX9iKQ3VrcPVWN5sqTzqzGeUj32CUkXS7Kkf5f06ysYz2skvVvSbdX9UsdxVNIfVbefJOnMEsci6VxJX5T0lOr+LZL+oJSxSHq+pGdLum9mW7K+S/pTSW+rbl8t6eaRx/IiSXuq228ceyyj/lL1eMIulvThmfvXS7p+1f1q0e9bJV0m6bikA9W2A5KOzxuHdr6n9OJqn4dmtr9c0o0j9/08SXdIeoF+WMRLHMcZ2il83rW9xLGcK+krkvZp5ysVb6sKRzFjkXRwV+FL1vd6n+r2Hu18KtJjjWXXY78l6V1jjmXqcUr95q09Wm2brOrPn4sk3S3pnIjYkqTq59nVbovGdW51e/f2Mb1F0mslfX9mW4njeIakbUn/WEVDb7d9ugocS0T8l6S/k/SIpC1J34yIj6jAscxI2fcfHBMRT0j6pqSfzdbz5f5QO/+z/pF+VbKMZepFfF5eN9k5kbafKun9kl4dEY8v23XOtliyfRS2L5d0MiLubXvInG0rH0dlj3b+7P2HiLhI0ne082f7IpMdS5UXX6GdP8l/TtLptl+x7JA52yYxlhb69H0S47L9OklPSHpXvWnObsnHMvUi/qikp8/cP0/SV1fUl6Vsn6qdAv6uiPhAtflrtg9Ujx+QdLLavmhcj1a3d28fy/MkvdT2lyS9V9ILbP+LyhuHqj48GhF3V/ffp52iXuJYXijpixGxHRHflfQBSb+iMsdSS9n3Hxxje4+kn5H0WLaez2H7sKTLJf1eVFmIRhrL1Iv4PZIusH2+7SdpJ+g/tuI+/ZjqyvI7JD0YEW+eeeiYpMPV7cPaycrr7VdXV6LPl3SBpE9Uf1Z+y/ZzqzZ/f+aY7CLi+og4LyIOaue5/mhEvKK0cVRj+W9JX7F9YbXpUkkPqMCxaCdGea7tn676cKmkB1XmWGop+z7b1u9o53075l+wL5F0naSXRsT/zjw0zljGuKgx8CLCb2hntsfnJb1u1f1Z0Mdf1c6fPJ+R9Knq329oJ8u6Q9KJ6ue+mWNeV43puGZmCEjakHRf9dhblfECTcOYLtEPL2wWOQ5Jz5K0Wb0u/yZpb8Fjeb2kh6p+/LN2ZjwUMRZJ79FOlv9d7fxP85qUfZd0mqR/lfSwdmZ9PGPksTysnRy7/t1/25hj4WP3AFCwqccpAIAlKOIAUDCKOAAUjCIOAAWjiANAwSjiAFAwijgAFOz/AbshD2iLNZKXAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "#from models import Model, SynapticConductanceModel\n",
    "from brian2 import *\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "\n",
    "model = SynapticConductanceModel(resistance=Model.LOW, # Model.LOW, Model.HIGH\n",
    "                                 noise=Model.LOW, n=50, # Model.OFF, Model.LOW, Model,HIGH\n",
    "                                 offset=SynapticConductanceModel.ACTIVE)\n",
    "\n",
    "\n",
    "# model = SineModel(resistance=Model.LOW, # Model.LOW, Model.HIGH\n",
    "#                                   noise=Model.OFF, n=1, # Model.OFF, Model.LOW, Model,HIGH\n",
    "#                                 )\n",
    "\n",
    "\n",
    "model.f = 400 * Hz\n",
    "model.set_stimulus_current(400 * nS) # current should be scaled by 100x for Active Offset so (500nS is actually 5nS)\n",
    "model._set_variable(\"i_injected\", 65 * pA)\n",
    "\n",
    "\n",
    "model.run(12*second)\n",
    "\n",
    "spike_times = [s/ms for s in model.spike_train.values()]\n",
    "\n",
    "plt.eventplot(spike_times)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "7f22e21e",
   "metadata": {},
   "outputs": [],
   "source": [
    "#print(spike_times)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "20e3191c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import scipy.io\n",
    "import numpy as np\n",
    "\n",
    "\n",
    "file_path = 'data0.mat'\n",
    "scipy.io.savemat(file_path, {'data0': spike_times[0]})\n",
    "\n",
    "file_path = 'data1.mat'\n",
    "scipy.io.savemat(file_path, {'data1': spike_times[1]})\n",
    "\n",
    "file_path = 'data2.mat'\n",
    "scipy.io.savemat(file_path, {'data2': spike_times[2]})\n",
    "\n",
    "file_path = 'data3.mat'\n",
    "scipy.io.savemat(file_path, {'data3': spike_times[3]})\n",
    "\n",
    "file_path = 'data4.mat'\n",
    "scipy.io.savemat(file_path, {'data4': spike_times[4]})\n",
    "\n",
    "file_path = 'data5.mat'\n",
    "scipy.io.savemat(file_path, {'data5': spike_times[5]})\n",
    "\n",
    "file_path = 'data6.mat'\n",
    "scipy.io.savemat(file_path, {'data6': spike_times[6]})\n",
    "\n",
    "file_path = 'data7.mat'\n",
    "scipy.io.savemat(file_path, {'data7': spike_times[7]})\n",
    "\n",
    "file_path = 'data8.mat'\n",
    "scipy.io.savemat(file_path, {'data8': spike_times[8]})\n",
    "\n",
    "file_path = 'data9.mat'\n",
    "scipy.io.savemat(file_path, {'data9': spike_times[9]})\n",
    "\n",
    "file_path = 'data10.mat'\n",
    "scipy.io.savemat(file_path, {'data10': spike_times[10]})\n",
    "\n",
    "file_path = 'data11.mat'\n",
    "scipy.io.savemat(file_path, {'data11': spike_times[11]})\n",
    "\n",
    "file_path = 'data12.mat'\n",
    "scipy.io.savemat(file_path, {'data12': spike_times[12]})\n",
    "\n",
    "file_path = 'data13.mat'\n",
    "scipy.io.savemat(file_path, {'data13': spike_times[13]})\n",
    "\n",
    "file_path = 'data14.mat'\n",
    "scipy.io.savemat(file_path, {'data14': spike_times[14]})\n",
    "\n",
    "file_path = 'data15.mat'\n",
    "scipy.io.savemat(file_path, {'data15': spike_times[15]})\n",
    "\n",
    "file_path = 'data16.mat'\n",
    "scipy.io.savemat(file_path, {'data16': spike_times[16]})\n",
    "\n",
    "file_path = 'data17.mat'\n",
    "scipy.io.savemat(file_path, {'data17': spike_times[17]})\n",
    "\n",
    "file_path = 'data18.mat'\n",
    "scipy.io.savemat(file_path, {'data18': spike_times[18]})\n",
    "\n",
    "file_path = 'data19.mat'\n",
    "scipy.io.savemat(file_path, {'data19': spike_times[19]})\n",
    "\n",
    "file_path = 'data20.mat'\n",
    "scipy.io.savemat(file_path, {'data20': spike_times[20]})\n",
    "\n",
    "file_path = 'data21.mat'\n",
    "scipy.io.savemat(file_path, {'data21': spike_times[21]})\n",
    "\n",
    "file_path = 'data22.mat'\n",
    "scipy.io.savemat(file_path, {'data22': spike_times[22]})\n",
    "\n",
    "file_path = 'data23.mat'\n",
    "scipy.io.savemat(file_path, {'data23': spike_times[23]})\n",
    "\n",
    "file_path = 'data24.mat'\n",
    "scipy.io.savemat(file_path, {'data24': spike_times[24]})\n",
    "\n",
    "file_path = 'data25.mat'\n",
    "scipy.io.savemat(file_path, {'data25': spike_times[25]})\n",
    "\n",
    "file_path = 'data26.mat'\n",
    "scipy.io.savemat(file_path, {'data26': spike_times[26]})\n",
    "\n",
    "file_path = 'data27.mat'\n",
    "scipy.io.savemat(file_path, {'data27': spike_times[27]})\n",
    "\n",
    "file_path = 'data28.mat'\n",
    "scipy.io.savemat(file_path, {'data28': spike_times[28]})\n",
    "\n",
    "file_path = 'data29.mat'\n",
    "scipy.io.savemat(file_path, {'data29': spike_times[29]})\n",
    "\n",
    "file_path = 'data30.mat'\n",
    "scipy.io.savemat(file_path, {'data30': spike_times[30]})\n",
    "\n",
    "file_path = 'data31.mat'\n",
    "scipy.io.savemat(file_path, {'data31': spike_times[31]})\n",
    "\n",
    "file_path = 'data32.mat'\n",
    "scipy.io.savemat(file_path, {'data32': spike_times[32]})\n",
    "\n",
    "file_path = 'data33.mat'\n",
    "scipy.io.savemat(file_path, {'data33': spike_times[33]})\n",
    "\n",
    "file_path = 'data34.mat'\n",
    "scipy.io.savemat(file_path, {'data34': spike_times[34]})\n",
    "\n",
    "file_path = 'data35.mat'\n",
    "scipy.io.savemat(file_path, {'data35': spike_times[35]})\n",
    "\n",
    "file_path = 'data36.mat'\n",
    "scipy.io.savemat(file_path, {'data36': spike_times[36]})\n",
    "\n",
    "file_path = 'data37.mat'\n",
    "scipy.io.savemat(file_path, {'data37': spike_times[37]})\n",
    "\n",
    "file_path = 'data38.mat'\n",
    "scipy.io.savemat(file_path, {'data38': spike_times[38]})\n",
    "\n",
    "file_path = 'data39.mat'\n",
    "scipy.io.savemat(file_path, {'data39': spike_times[39]})\n",
    "\n",
    "file_path = 'data40.mat'\n",
    "scipy.io.savemat(file_path, {'data40': spike_times[40]})\n",
    "\n",
    "file_path = 'data41.mat'\n",
    "scipy.io.savemat(file_path, {'data41': spike_times[41]})\n",
    "\n",
    "file_path = 'data42.mat'\n",
    "scipy.io.savemat(file_path, {'data42': spike_times[42]})\n",
    "\n",
    "file_path = 'data43.mat'\n",
    "scipy.io.savemat(file_path, {'data43': spike_times[43]})\n",
    "\n",
    "file_path = 'data44.mat'\n",
    "scipy.io.savemat(file_path, {'data44': spike_times[44]})\n",
    "\n",
    "file_path = 'data45.mat'\n",
    "scipy.io.savemat(file_path, {'data45': spike_times[45]})\n",
    "\n",
    "file_path = 'data46.mat'\n",
    "scipy.io.savemat(file_path, {'data46': spike_times[46]})\n",
    "\n",
    "file_path = 'data47.mat'\n",
    "scipy.io.savemat(file_path, {'data47': spike_times[47]})\n",
    "\n",
    "file_path = 'data48.mat'\n",
    "scipy.io.savemat(file_path, {'data48': spike_times[48]})\n",
    "\n",
    "file_path = 'data49.mat'\n",
    "scipy.io.savemat(file_path, {'data49': spike_times[49]})\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d353eff4",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}