{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "0b85a598",
   "metadata": {},
   "outputs": [],
   "source": [
    "from brian2 import *\n",
    "\n",
    "from adex_sine import *\n",
    "\n",
    "defaultclock.dt = 10 * us\n",
    "\n",
    "\n",
    "class Model:\n",
    "    # Model type flags\n",
    "    SINE = 0\n",
    "    EXP2SYN = 1\n",
    "\n",
    "    # Noise flags\n",
    "    HIGH = 0\n",
    "    LOW = 1\n",
    "    OFF = -1\n",
    "\n",
    "    # Noise parameters\n",
    "    EXCITATORY_NOISE_VARIANCE = {HIGH: 0.5 * nS, LOW: 0.25 * nS, OFF: 0 * nS}\n",
    "    INHIBITORY_NOISE_VARIANCE = {HIGH: 1.25 * nS, LOW: 0.625 * nS, OFF: 0 * nS}\n",
    "\n",
    "    # Noise mean conductance\n",
    "    EXCITATORY_CONDUCTANCE = 1 * nS\n",
    "    INHIBITORY_CONDUCTANCE = 4 * nS\n",
    "\n",
    "    DEFAULT_PARAMETERS = {\n",
    "        \"sigma_flux\" : 6.75*pA,     \n",
    "        \"c\": 85 * pF,\n",
    "        \"tau_w\": 18 * ms,\n",
    "        \"b\": 0.25 * nA,\n",
    "        \"a\": 1.3 * nS,\n",
    "        \"v_T\": -45 * mV,\n",
    "        \"v_thresh\": 0 * mV,\n",
    "        \"DeltaT\": 0.2 * mV,\n",
    "        # EQUILIBRIUM POTENTIAL\n",
    "        \"e_l\": -65 * mV,\n",
    "        \"e_ex\": 0 * mV,\n",
    "        \"e_in\": -70 * mV,\n",
    "        # CONDUCTANCES\n",
    "        \"g_l\": 3 * nS,\n",
    "        \"mu_ex\": 0 * nS,\n",
    "        \"mu_in\": 0 * nS,\n",
    "        # EXCITATORY NOISE\n",
    "        \"sigma_ex\": 0 * nS,\n",
    "        \"tau_noise_ex\": 3 * ms,\n",
    "        # INHIBITORY NOISE\n",
    "        \"sigma_in\": 0 * nS,\n",
    "        \"tau_noise_in\": 10 * ms,\n",
    "        # SINE INPUT\n",
    "        \"f\": 100 * Hz,\n",
    "        \"A\": 0 * pA,\n",
    "        \"i_injected\": 0 * pA,\n",
    "        \"v_reset\": -70 * mV,\n",
    "        # m current\n",
    "        \"g_adapt\": 10 * nS,\n",
    "        \"e_k\": -90*mV,\n",
    "        \"beta_z\": -35*mV,\n",
    "        \"gamma_z\": 4*mV,     #5\n",
    "        \"tau_z\": 100*ms,\n",
    "    }\n",
    "\n",
    "    def __init__(\n",
    "        self, n, *, stim=None, noise=None, resistance=None, additional_vars=()\n",
    "    ):\n",
    "        if resistance is None:\n",
    "            raise ValueError(\"Resistance must be specified\")\n",
    "\n",
    "        if noise is None:\n",
    "            raise ValueError(\"Noise must be specified\")\n",
    "\n",
    "        self.stim_type = stim\n",
    "        self._input_resistance = None\n",
    "        self._noise_level = None\n",
    "        self._duration = 0\n",
    "        self.recorded_vars = (\"v\",) + additional_vars\n",
    "\n",
    "        self.neurons = self.set_default(n_neuron=n)\n",
    "        self.set_resistance(resistance)\n",
    "        self.set_noise(noise)\n",
    "\n",
    "        self.spikes = None\n",
    "        self.spiker = None\n",
    "        self.synapses = None\n",
    "        self.inhib_synapses = None\n",
    "        self.smon = None\n",
    "        self.network = None\n",
    "        self.build_network()\n",
    "\n",
    "    def create_model(self):\n",
    "        return ADEX_MODEL, self.DEFAULT_PARAMETERS\n",
    "\n",
    "    def set_default(self, n_neuron):\n",
    "        model, parameters = self.create_model()\n",
    "\n",
    "        neurons = NeuronGroup(\n",
    "            n_neuron,\n",
    "            model=model,\n",
    "            method=\"Euler\",\n",
    "            name=\"neurons\",\n",
    "            threshold=\"v > v_thresh\",\n",
    "            reset=\"v = v_reset; w += b\",\n",
    "        )\n",
    "\n",
    "        for parameter, value in parameters.items():\n",
    "            neurons.__setattr__(parameter, value)\n",
    "\n",
    "        neurons.v = neurons.e_l  # remove most of transient\n",
    "\n",
    "        return neurons\n",
    "\n",
    "    def set_resistance(self, level):\n",
    "        if level == self.LOW:\n",
    "            exc_conductance = self.EXCITATORY_CONDUCTANCE\n",
    "            inhib_conductance = self.INHIBITORY_CONDUCTANCE\n",
    "\n",
    "        else:\n",
    "            exc_conductance = inhib_conductance = 0\n",
    "\n",
    "        self._input_resistance = level\n",
    "        self._set_variable(\"mu_ex\", exc_conductance)\n",
    "        self._set_variable(\"mu_in\", inhib_conductance)\n",
    "\n",
    "    def set_noise(self, level):\n",
    "        if level == self.HIGH or level == self.LOW:\n",
    "            exc_noise = self.EXCITATORY_NOISE_VARIANCE[level]\n",
    "            inhib_noise = self.INHIBITORY_NOISE_VARIANCE[level]\n",
    "\n",
    "        else:\n",
    "            exc_noise = inhib_noise = 0\n",
    "\n",
    "        self._noise_level = level\n",
    "        self._set_variable(\"sigma_ex\", exc_noise)\n",
    "        self._set_variable(\"sigma_in\", inhib_noise)\n",
    "\n",
    "    def set_injected_current(self, amplitude):\n",
    "        self._set_variable(\"i_injected\", amplitude)\n",
    "        self._set_variable(\"A\", 0 * pA)\n",
    "\n",
    "    def set_stimulus_current(self, amplitude):\n",
    "        self._set_variable(\"A\", amplitude)\n",
    "        self._set_variable(\"i_injected\", 0 * pA)\n",
    "\n",
    "    @property\n",
    "    def f(self):\n",
    "        return self.neurons.f\n",
    "\n",
    "    @f.setter\n",
    "    def f(self, new_f):\n",
    "        self._set_variable(\"f\", new_f)  # this will reset smon\n",
    "        if self.stim_type == self.EXP2SYN:\n",
    "            self.spiker.T = 1 / new_f\n",
    "\n",
    "    def run(self, duration, report=\"stdout\"):\n",
    "        self._duration = duration\n",
    "        self.network.run(duration, report=report)\n",
    "\n",
    "    def build_network(self):\n",
    "        self.smon = StateMonitor(\n",
    "            self.neurons, self.recorded_vars, record=True, name=\"smon\"\n",
    "        )\n",
    "        self.spikes = SpikeMonitor(self.neurons, name=\"spikes\")\n",
    "\n",
    "        self.network = Network(self.neurons, self.smon, self.spikes)\n",
    "\n",
    "    def _set_variable(self, name, value):\n",
    "        self.neurons.__setattr__(name, value)\n",
    "        self.reset_recording()\n",
    "\n",
    "    def reset_recording(self):\n",
    "        try:\n",
    "            self.network\n",
    "        except AttributeError:\n",
    "            return  # network not yet initialized\n",
    "\n",
    "        self.network.remove(self.smon, self.spikes)\n",
    "\n",
    "        self.smon = StateMonitor(\n",
    "            self.neurons, self.recorded_vars, record=True, name=\"smon\"\n",
    "        )\n",
    "        self.spikes = SpikeMonitor(self.neurons, name=\"spikes\")\n",
    "\n",
    "        self.network.add(self.smon, self.spikes)\n",
    "\n",
    "    @property\n",
    "    def spike_train(self):\n",
    "        return self.spikes.spike_trains()\n",
    "\n",
    "    @property\n",
    "    def firing_rate(self):\n",
    "        return self.spikes.count / self.duration\n",
    "\n",
    "    @property\n",
    "    def duration(self):\n",
    "        return self._duration\n",
    "\n",
    "    @property\n",
    "    def input_resistance(self):\n",
    "        if self._input_resistance == self.HIGH:\n",
    "            return \"HIGH\"\n",
    "        else:\n",
    "            return \"LOW\"\n",
    "\n",
    "    @property\n",
    "    def noise_level(self):\n",
    "        if self._noise_level == self.HIGH:\n",
    "            return \"HIGH\"\n",
    "        elif self._noise_level == self.LOW:\n",
    "            return \"LOW\"\n",
    "        else:\n",
    "            return \"NO\"\n",
    "\n",
    "    def __repr__(self):\n",
    "        return f\"{self.neurons.N} Neurons with {self.input_resistance} input resistance and {self.noise_level} noise\"\n",
    "\n",
    "    def __str__(self):\n",
    "        return self.__repr__()\n",
    "\n",
    "    def store(self, name):\n",
    "        self.network.store(name)\n",
    "\n",
    "    def restore(self, name):\n",
    "        self.network.restore(name)\n",
    "\n",
    "    @property\n",
    "    def v(self):\n",
    "        return self.smon.v\n",
    "\n",
    "    @property\n",
    "    def t(self):\n",
    "        return self.smon.t\n",
    "\n",
    "    @property\n",
    "    def injected_current(self):\n",
    "        return self.neurons.i_injected\n",
    "\n",
    "    @property\n",
    "    def stimulus_amplitude(self):\n",
    "        return self.neurons.A\n",
    "\n",
    "\n",
    "class CurrentModel(Model):\n",
    "    def __init__(self, **kwargs):\n",
    "        super().__init__(stim=self.SINE, **kwargs)\n",
    "\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += CURRENT_INPUT\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "\n",
    "class SineModel(CurrentModel):\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += SINE_INPUT\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "\n",
    "class SawModel(CurrentModel):\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += SAW_INPUT\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "\n",
    "class SynapticModel(Model):\n",
    "    def __init__(self, **kwargs):\n",
    "        super().__init__(stim=self.EXP2SYN, **kwargs)\n",
    "\n",
    "    SYNAPTIC_PARAMETERS = {\n",
    "        \"tau_input_1\": 0.4 * ms,\n",
    "        \"tau_input_2\": 4 * ms,\n",
    "        \"offset_A\": 1.48793507e-11,\n",
    "        \"offset_B\": -2.66359562e-08,\n",
    "        \"offset_C\": 1.77538800e-05,\n",
    "        \"offset_D\": -8.05925810e-04,\n",
    "        \"offset_E\": -3.51463644e-02,\n",
    "        \"offset_switch\": 0,\n",
    "    }\n",
    "\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += EXP2SYN_WAVEFORM + SUMMATION_OFFSET\n",
    "        parameters = {**parameters, **self.SYNAPTIC_PARAMETERS}\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "    def build_network(self):\n",
    "        super().build_network()\n",
    "        self.spiker = NeuronGroup(\n",
    "            self.neurons.N,\n",
    "            \"\"\"T : second (constant)\n",
    "                                     lastspike : second\"\"\",\n",
    "            threshold=\"timestep(t-lastspike, dt)>=timestep(T, dt)\",\n",
    "            reset=\"lastspike=t\",\n",
    "        )\n",
    "        self.spiker.T = 1 / self.neurons.f\n",
    "        self.synapses = Synapses(\n",
    "            self.spiker, self.neurons, on_pre=\"input_aux += 1\"\n",
    "        )  # connect input to neurons\n",
    "        self.synapses.connect(\"i==j\")  # one synapse goes to one neuron\n",
    "\n",
    "        self.network.add(self.spiker, self.synapses)\n",
    "\n",
    "\n",
    "class SynapticCurrentModel(SynapticModel):\n",
    "    def __init__(self, offset=True, **kwargs):\n",
    "        self.offset = 1 if offset else 0\n",
    "        super().__init__(**kwargs)\n",
    "\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += CURRENT_INPUT + SYNAPTIC_INPUT_CURRENT\n",
    "        parameters = {**parameters, **{\"offset_switch\": self.offset}}\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "\n",
    "class SynapticConductanceModel(SynapticModel):\n",
    "    FLAT = 0\n",
    "    ACTIVE = 1\n",
    "\n",
    "    CONDUCTANCE_PARAMETERS = {\n",
    "        \"A\": 0 * nS,  # overwrite A to be conductance\n",
    "        \"g_i\": 1 * nS,\n",
    "    }\n",
    "\n",
    "    INHIBITION_PARAMETERS = {\n",
    "        \"tau_inhibition_1\": 1 * ms,\n",
    "        \"tau_inhibition_2\": 10 * ms,\n",
    "    }\n",
    "\n",
    "    def __init__(self, offset=ACTIVE, **kwargs):\n",
    "        self.offset = offset\n",
    "        super().__init__(**kwargs)\n",
    "\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        if self.offset == self.FLAT:\n",
    "            model += CONDUCTANCE_INPUT + SYNAPTIC_CONDUCTANCE_FLAT\n",
    "            parameters = {\n",
    "                **parameters,\n",
    "                **self.SYNAPTIC_PARAMETERS,\n",
    "                **self.CONDUCTANCE_PARAMETERS,\n",
    "                **{\"offset_switch\": 1},\n",
    "            }\n",
    "\n",
    "        elif self.offset == self.ACTIVE:\n",
    "            model += CONDUCTANCE_INPUT + SYNAPTIC_CONDUCTANCE_STIM\n",
    "            parameters = {\n",
    "                **parameters,\n",
    "                **self.SYNAPTIC_PARAMETERS,\n",
    "                **self.CONDUCTANCE_PARAMETERS,\n",
    "                **self.INHIBITION_PARAMETERS,\n",
    "            }\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "    def build_network(self):\n",
    "        super().build_network()\n",
    "        if self.offset != self.ACTIVE:\n",
    "            return\n",
    "\n",
    "        self.inhib_synapses = Synapses(\n",
    "            self.spiker, self.neurons, on_pre=\"input_inhib_aux += 1\", delay=2 * ms\n",
    "        )  # connect input to neurons\n",
    "        self.inhib_synapses.connect(\"i==j\")  # one synapse goes to one neuron\n",
    "\n",
    "        self.network.add(self.inhib_synapses)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "c82769f2",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING    Cannot use Cython, a test compilation failed: Microsoft Visual C++ 14.0 or greater is required. Get it with \"Microsoft C++ Build Tools\": https://visualstudio.microsoft.com/visual-cpp-build-tools/ (DistutilsPlatformError) [brian2.codegen.runtime.cython_rt.cython_rt.failed_compile_test]\n",
      "INFO       Cannot use compiled code, falling back to the numpy code generation target. Note that this will likely be slower than using compiled code. Set the code generation to numpy manually to avoid this message:\n",
      "prefs.codegen.target = \"numpy\" [brian2.devices.device.codegen_fallback]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Starting simulation at t=0. s for a duration of 12. s\n",
      "0.54915 s (4%) simulated in 10s, estimated 3m 29s remaining.\n",
      "1.12383 s (9%) simulated in 20s, estimated 3m 14s remaining.\n",
      "1.55569 s (12%) simulated in 30s, estimated 3m 21s remaining.\n",
      "2.03088 s (16%) simulated in 40s, estimated 3m 16s remaining.\n",
      "2.55151 s (21%) simulated in 50s, estimated 3m 5s remaining.\n",
      "3.02801 s (25%) simulated in 1m 0s, estimated 2m 58s remaining.\n",
      "3.46175 s (28%) simulated in 1m 10s, estimated 2m 53s remaining.\n",
      "3.92048 s (32%) simulated in 1m 20s, estimated 2m 45s remaining.\n",
      "4.35092 s (36%) simulated in 1m 30s, estimated 2m 38s remaining.\n",
      "4.8276 s (40%) simulated in 1m 40s, estimated 2m 29s remaining.\n",
      "5.30698 s (44%) simulated in 1m 50s, estimated 2m 19s remaining.\n",
      "5.81281 s (48%) simulated in 2m 0s, estimated 2m 8s remaining.\n",
      "6.31353 s (52%) simulated in 2m 10s, estimated 1m 57s remaining.\n",
      "6.82014 s (56%) simulated in 2m 20s, estimated 1m 46s remaining.\n",
      "7.32755 s (61%) simulated in 2m 30s, estimated 1m 36s remaining.\n",
      "7.84743 s (65%) simulated in 2m 40s, estimated 1m 25s remaining.\n",
      "8.35981 s (69%) simulated in 2m 50s, estimated 1m 14s remaining.\n",
      "8.87936 s (73%) simulated in 3m 0s, estimated 1m 3s remaining.\n",
      "9.40516 s (78%) simulated in 3m 10s, estimated 52s remaining.\n",
      "9.93532 s (82%) simulated in 3m 20s, estimated 42s remaining.\n",
      "10.46134 s (87%) simulated in 3m 30s, estimated 31s remaining.\n",
      "10.9797 s (91%) simulated in 3m 40s, estimated 20s remaining.\n",
      "11.51327 s (95%) simulated in 3m 50s, estimated 10s remaining.\n",
      "12. s (100%) simulated in 3m 59s\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[<matplotlib.collections.EventCollection at 0x19c800159d0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c800244c0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80024eb0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8002e9a0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80035400>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80035e50>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8003f850>,\n",
       " <matplotlib.collections.EventCollection at 0x19c806d3190>,\n",
       " <matplotlib.collections.EventCollection at 0x19c806d3d30>,\n",
       " <matplotlib.collections.EventCollection at 0x19c806dda30>,\n",
       " <matplotlib.collections.EventCollection at 0x19c806e23d0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c806e2d90>,\n",
       " <matplotlib.collections.EventCollection at 0x19c806ed700>,\n",
       " <matplotlib.collections.EventCollection at 0x19c806edeb0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c806f5850>,\n",
       " <matplotlib.collections.EventCollection at 0x19c806f5fd0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c806fdc10>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80704490>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80704f70>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8070c790>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80714340>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8071a100>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8071aa90>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80723310>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80723d60>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8072b820>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80732130>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80732e50>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8073c7c0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80743130>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80743c40>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8074a430>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8074ad60>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80755910>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8075b7c0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c807611c0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80761b50>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8076b550>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8076bc70>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80773820>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8077a190>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8077abe0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80782430>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80782f70>,\n",
       " <matplotlib.collections.EventCollection at 0x19c8078ab20>,\n",
       " <matplotlib.collections.EventCollection at 0x19c807913d0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80791b20>,\n",
       " <matplotlib.collections.EventCollection at 0x19c807994f0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c80799fd0>,\n",
       " <matplotlib.collections.EventCollection at 0x19c807a2970>]"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD4CAYAAAAaT9YAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAYnUlEQVR4nO3dfcwmV1nH8d/lbkuxULtrdzdrS9ySNI0NiRQfCRVDKksBsaHViJYIrrG6JmoCYkK38ofyFwUNIYZE2ABm1QKtvLibBoVNoTEkpPTZ8NbSLlveysrKPlDDm39I4fKPe6bcHeblzMyZlzP7/SSb537mnpdz5p7nyt7XnLmOubsAAGn6qakbAADojiAOAAkjiANAwgjiAJAwgjgAJGz7mAe75JJLfN++fWMeEgCSd+LEiW+6+66y90YN4vv27dPm5uaYhwSA5JnZV6veI50CAAkjiANAwgjiAJAwgjgAJIwgDgAJCxqdYmZfkfRdST+U9Ji7b5jZTkl3SNon6SuSfsfd/2eYZgIAyrT5n/ivufsz3X0j+/2QpLvd/QpJd2e/AwBG1CedcoOkI9nrI5Ju7N0aAEAroUHcJX3EzE6Y2cFs2R53PyNJ2c/dZRua2UEz2zSzza2trf4tBgA8LvSJzee6+9fNbLek42b2UOgB3P2wpMOStLGxwQwUABBRUBB3969nP8+a2QclPVvSN8xsr7ufMbO9ks4O1cjfffsnHn/9+TPf0VV7L2rc5o4/ueYJ2+a/n2vWz520Og/r56Tp/br95p9F07kN/Qya2lXWn6LiMar2E6Kp3cX3h7zWqs5N8e9hjtd502eWa7reiutW7bfqGlhfHnKtVW07N43pFDO70Myemr+W9EJJ90s6JulAttoBSUeHaiQAoFzI/8T3SPqgmeXrv9vd/8PM7pN0p5ndLOkRSS8brpkAgDKNQdzdvyTpF0uWf0vS/iEaBQAIY2POdr+xseFdStHW5dSacuRD5rJSyJe1MXVuMMYxynKdY30+Uxw79P5FcZ2h29c2D10lZN2mY7Tt45j3OkKZ2Ym1Z3SegMfuASBhBHEASBhBHAASlnROvGrscFkuq8t44ZhjjKfKN3fJEVat12ZMeZuc6Pp48z7nom7bqvMQM4caKj9WcZz9HHKvRVPeY5izsc8FOXEAWCiCOAAkjCAOAAlLOieei5Xb7KNNG8veC93/VGOeY+Wt+7QhxBzytXPMHbdp09TPBMQYpx16r6brOPuQY+dinEdy4gCwUARxAEgYQRwAEpZkTrxuHHjbnN8Q+atzQd8x57H2v2RDnIO5ntcu9zyansWo28dcz0MVcuIAsFAEcQBIGEEcABKWZE48FzufFStP1jQGtq5mRts5JOdgjvnFObRpjOsp1rGm3r7t/kPnHF1f1vdZjSmREweAhSKIA0DCkkynVA0NbPu1c67TaRXX6/LYb5vH5MdM4TQNFy07ZlkKqri/to9E9ynNW3XtlbUx9DoNLf9bNHRJ5TmIOV3aHKdeC0E6BQAWiiAOAAkjiANAwpLLiReHEA2Rz25TJrPLPqYSUr6gzX5C89Nj5WRDc9d1YkzT1nTvYQ7lHkI+q6a/tS7nd33drm3so+p+UZt2TYGcOAAsFEEcABJGEAeAhCWXEy+qGj/cZf99c8J99rk0IeOx2+SQ+7ZhzsYYuxw6Pr5uDHtuyukQQ9sXc/99t4txfsiJA8BCEcQBIGHBQdzMtpnZp8zsruz3nWZ23MxOZT93DNdMAECZ4Jy4mb1G0oaki9z9ejN7k6RH3f02MzskaYe731K3j6FL0cYaB13cpuz4oWNoQ3OLRbHHvK+3eawccddaNrnUctlt1m+TU57jeYl9Lbe5L5DKvY6YeufEzewySb8h6R1ri2+QdCR7fUTSjT3aCADoIDSd8hZJr5X0o7Vle9z9jCRlP3eXbWhmB81s08w2t7a2+rQVAFDQGMTN7HpJZ939RJcDuPthd99w941du3Z12QUAoEJjTtzM3iDplZIek3SBpIskfUDSL0u61t3PmNleSfe4+5V1+4pZO6VPDrXN1E5lx8330SXHPEY+r0sNjznlF+dU83nsc7V+XeXm8DnN9ZoZsi2h8WXo5x2knjlxd7/V3S9z932SbpL0UXd/haRjkg5kqx2QdLRzCwEAnfQZJ36bpOvM7JSk67LfAQAj2t5mZXe/R9I92etvSdofv0kAgFDJ1U6py1tL88jTDaHrnKJV+2kaf9s0Tr5PG4rHK9tvm+2rcudt75k0jakfcy7SJm3GUces8T1Xsa7RkPHvsevMh6B2CgAsFEEcABJGEAeAhCWXE1835NjQofODMefqnNO43RBj1EsZ6pwMNZ9rrumc1D2fELNtU/wdzO06nlN7yIkDwEIRxAEgYQRxAEhYMjnxstol0nBz7aWu7vx0ycPPJcccOuY5hrI6PXOby7Xtfqao3TN2brnP8ZtiyFR5cnLiALBQBHEASFgy6ZQ6Sxp+V2bKNFHXKcWK247VxqplIW2f+mt/m21yXVNeU6U8QsoF5PLPqqrURlNZgdBjtGljyPtDIJ0CAAtFEAeAhBHEASBhyeXEy6auKq7XlLNtO9Ru/VhdhunNIS/fVGZ1fZ2Y7ZxD3+sM/ah6myFrsYdPxsrpzv0zLBPj729O/SYnDgALRRAHgIQRxAEgYUnlxOvKdDaNMQ0ZM1o0ZKnUEFOOW24aex1jWramnG2ooe471PU3pITsuqZpBdf3E1ubcfRl7am6nxJjnHtbofe7um4/V+TEAWChCOIAkDCCOAAkLKmceJWm6au6TIFVXBbSvqYx6THyyGXtbdOepn2G5izPxRLAfc5ryHrr64dcn2XrL/XcS811fHJDjw1vW/8lBnLiALBQBHEASBhBHAASlnROfMypsmIcY6w6xTHGWaeWYx26BsrUbZqDqfvTZmx73ftttZ3OcIjzRE4cABaKIA4ACWsM4mZ2gZl90sw+Y2YPmNnrs+U7zey4mZ3Kfu4YvrkAgHWNOXEzM0kXuvv3zOw8SR+X9CpJvyXpUXe/zcwOSdrh7rfU7WtOOfGQ47QZKzpkLZGu6zZtX3zdNJdhjOO3NcYYfDzRGOd1SZ9XVW2aurkP2uqVE/eV72W/npf9c0k3SDqSLT8i6cbOLQQAdBKUEzezbWb2aUlnJR1393sl7XH3M5KU/dxdse1BM9s0s82tra1IzQYASIFB3N1/6O7PlHSZpGeb2TNCD+Duh919w903du3a1bGZAIAyrceJm9lfS/q+pD+WdK27nzGzvZLucfcr67YdIifepdZH3TGGzq9OlVMuCh0b3lSXIqRWdSxV+41RO6PLXJdDzFE6h1xxzDrhdZ9FU73/uWhTT6VoFrVTzGyXmV2cvX6ypBdIekjSMUkHstUOSDoapbUAgGDbA9bZK+mImW3TKujf6e53mdknJN1pZjdLekTSywZsJwCgRGMQd/fPSrq6ZPm3JO0folEAgDDJ1U6JPVdhSC60Lg8cMg/j1GOqQ9sbsq/Q92O2O3cujwdfar/HHOvfph552TZTonYKACwUQRwAEpZcOkVq/xWoSzqhTbtiTbc2xFe3mFPNzd1Qn3OMNuW6DNsburxErimluL79EEMDpygP3bRerstw0pj9IZ0CAAtFEAeAhBHEASBhyeTE13NwXUu31u0nZL0qdTn6NkP1QqebCm1T8RihQrad0zRuY5QBmEuOvUqbqcvGKisxRvmFpn5XXQdz/AzrkBMHgIUiiANAwgjiAJCwZHLiuWKuuu941ZBcdt3xm7ZtOm5oHncOY8inOl5ILnPqkgd1YvS7bNmc+xxTrFIRKSMnDgALRRAHgIQRxAEgYcnlxEO0HT/e9N6YNVZCy7LmqnLzKY+JrdOnFknd/kLrhsTatmsbh9S2nk+X+iFjlDAeQ9t7aevrdEFOHAAWiiAOAAkjiANAwhaZE69SHFu+vrzseEPWfIh9rCXlvYtC6sMXhdacD11/SmPck+l7D2Xs8dttPqsYtfunHp9OThwAFoogDgAJI4gDQMKSzInHmtOy6r02xwnJ18bKwS05770u9PMOzVOeKzVGYoj5fEGbWt9N27Y5Tt37qT4/QU4cABaKIA4ACSOIA0DCksuJF+uHD1lLI9Z2U893ONTxuuSu+45ZbtOnIT/LFPKoUvfccqxzOtT6TTVKUvucmpATB4CFagziZvY0M/uYmT1oZg+Y2auy5TvN7LiZncp+7hi+uQCAdSH/E39M0l+6+y9Ieo6kPzOzqyQdknS3u18h6e7sdwDAiFrnxM3sqKS3Zv+udfczZrZX0j3ufmXdtkPVTgmp5xxapztWDq3N8WLkAYvGyAW2+VyGqMkR2q6QminFejrF99u2IaRNU+VtQ59BCH0GIuQYscac56rukZRpqpXUtb1jfn7RcuJmtk/S1ZLulbTH3c9IUvZzd892AgBaCg7iZvYUSe+X9Gp3/06L7Q6a2aaZbW5tbXVpIwCgQlA6xczOk3SXpA+7+5uzZSc1o3RK2fpthlUV99W1/G3TV/cY2n6V7bOvNuvXfSXPzbXk69yHpE01zdl6qilkyGdRn/K3Ma7zpmut2L9YYl/jvdIpZmaS3inpwTyAZ45JOpC9PiDpaK9WAgBa2x6wznMlvVLS58zs09myv5J0m6Q7zexmSY9IetkgLQQAVGoM4u7+cUlW8fb+uM0BALSR3GP3UrchTmMY85ixctljtLnpEemx2tHUnrKhaEO1a273BeZ+TyBUmzIN68u67n8sPHYPAAtFEAeAhBHEASBhSebEcyElM6u0nbarTenLPnmz1HOTU7Z/7Px+m/djleCtutZyXe4xlB2rqgxBlTaPp8cu9dt0boYeSz8GcuIAsFAEcQBIGEEcABKWXE68rmRo1Xaxpqbqs/8QTeV0q9ZLNX8eqk/Oc6gcad2xcn2PM5dyqEOPlQ+tlzJ1XjpmnaG2yIkDwEIRxAEgYQRxAEhYcjlxKWysdtV2XY8da0q0MXO0Tccf4xh146ar6lSHjonONb3Xpb1l209Zfybm8UKvwT7ntM0xxxjnXTxOn3XaHCs3aT1xAMB8EcQBIGEEcQBIWJI58aKqPFvZ3Hmhuaoh8pxzqanSlOucejxuk7m3L6a5XDNz1jRPZtd7anNCThwAFoogDgAJI4gDQMKSy4nX5b6G0lQPuSlnn2tTi3z9/bJjDqGsH2XzTpatO8c8Yog550Fjj5muqxM+df9j1Svqsp85XwM5cuIAsFAEcQBIGEEcABKWbE68ytzyWkPm29rM+zm2OeQcm8YHj3l/JaSuz1xqswxlynrcMUzZHnLiALBQBHEASFjS6ZS+w9/m9nWtSUrD+rqkd8ZKwYxV+nRqTY+jz03I9T1kOYyi/JoolkxuW0I5BtIpALBQBHEASFhjEDezd5nZWTO7f23ZTjM7bmansp87hm0mAKBMY07czJ4n6XuS/sndn5Ete5OkR939NjM7JGmHu9/SdLAhhhh2eQy8zTRrISVt6x5l7jL115yHDjaZc9vKlLW3ax+6XIMpnKc2bY1VHmDdnM5RrPIAbfXKibv7f0p6tLD4BklHstdHJN3Yp4EAgG665sT3uPsZScp+7q5a0cwOmtmmmW1ubW11PBwAoMzgNzbd/bC7b7j7xq5du4Y+HACcU4LGiZvZPkl3reXET0q61t3PmNleSfe4+5VN+4ldirbNtG1l763vu2vJ15DSsXX7DH1vqBxqzBxm3ePiKYzHHrO9Xa+JoY55rgo5J11jRMzc/hDjxI9JOpC9PiDpaMf9AAB6CBli+B5Jn5B0pZmdNrObJd0m6TozOyXpuux3AMDItjet4O4vr3hrf+S2AABaSrZ2SpeSnl3F2l/ImOSy30PuA9Tl4qvWrWpbm9xwyPHqjlvcR9V+q+pV1O1v/bgx8pNDj1/uOrVYaG2PuZmqLHBZG/rem+h7b60JtVMAYKEI4gCQMII4ACQs2Zx4UdXUW1XajucutqNuvS7Gyl3GmiKr6/RisbYr277J0LXJh9pvmzrsQ+kynnrs49dtl6uqf5S/N9fnGciJA8BCEcQBIGEEcQBIWPI58THGbs9Fl3ZN2ZdYdWWqtMlb9jkPc8z1DtWG9XHmuaHz8jHz3UM9IzA1cuIAsFAEcQBIGEEcABKWfE68aK45sFjzFI49jrXPPYMh2lpVoyLX935BUx6/SkjNjJDx8Esyx36Ffr4h92jGHEtOThwAFoogDgAJI4gDQMIWkxOfsnbFnIXWLSlb1nVOwbrt2tRDr9qmqV5KVc35oT6/rrXYYx4717cu9hS61qEP3e9c+90GOXEAWCiCOAAkbDHplFzfEquh77U9XtP2IUP5YpVcHeJrZt99Lumrb5lYJYDbrBfrM8l1SU+1TYWVCS1XvGSkUwBgoQjiAJAwgjgAJCy5nHiuaahh26FXofnnqXJvYw2Ty7WZjq2rqn2ETMGXWg40xXaHTG3WpjTtkPdiytrYtE1KnwU5cQBYKII4ACSMIA4ACUs2Jy5N85hzH3NrU59Htrs+ml9cN7S8Z5/j1bU7ZP8h9076jtNuOy48F3JvYqzp/GJ9RnM77hz+bsmJA8BCEcQBIGG9griZvdjMTprZw2Z2KFajAABhOufEzWybpC9Iuk7SaUn3SXq5u3++apuYtVPq8qll64yVl1tvS9d9hIxbD5lSrM9xpbCyv1PlQduqyrMXy9ZOZcqpv4YwVHnZLm3oUuMlV7dtm7HyfT/LoXLiz5b0sLt/yd3/T9J7Jd3QY38AgJb6BPFLJX1t7ffT2bInMLODZrZpZptbW1s9DgcAKOoTxK1k2U/kZtz9sLtvuPvGrl27ehwOAFDUJyd+jaS/cfcXZb/fKknu/oaqbbrmxAHgXDZUTvw+SVeY2eVmdr6kmyQd67E/AEBL27tu6O6PmdmfS/qwpG2S3uXuD0RrGQCgUecgLknu/iFJH4rUFgBASzyxCQAJI4gDQMII4gCQMII4ACSMIA4ACSOIA0DCCOIAkDCCOAAkbNQ5Ns1sS9JXO25+iaRvRmzOlJbSl6X0Q6Ivc0VfVn7e3UsrCI4axPsws82qAjCpWUpfltIPib7MFX1pRjoFABJGEAeAhKUUxA9P3YCIltKXpfRDoi9zRV8aJJMTBwD8pJT+Jw4AKCCIA0DCZh/EzezFZnbSzB42s0NTt6eMmT3NzD5mZg+a2QNm9qps+U4zO25mp7KfO9a2uTXr00kze9Ha8l8ys89l7/29mZVNSD10f7aZ2afM7K7E+3Gxmb3PzB7KPptrEu7LX2TX1v1m9h4zuyCVvpjZu8zsrJndv7YsWtvN7Elmdke2/F4z2zdyX/42u8Y+a2YfNLOLR+2Lu8/2n1bTvn1R0tMlnS/pM5KumrpdJe3cK+lZ2eunSvqCpKskvUnSoWz5IUlvzF5flfXlSZIuz/q4LXvvk5KukWSS/l3Sr0/Qn9dIereku7LfU+3HEUl/lL0+X9LFKfZF0qWSvizpydnvd0r6g1T6Iul5kp4l6f61ZdHaLulPJb0te32TpDtG7ssLJW3PXr9x7L6M+kfV4YRdI+nDa7/fKunWqdsV0O6jkq6TdFLS3mzZXkkny/qh1Tyl12TrPLS2/OWS3j5y2y+TdLek5+vHQTzFflykVeCzwvIU+3KppK9J2qnVlIp3ZYEjmb5I2lcIfNHanq+Tvd6u1VORNlZfCu/9pqTbx+zL3NMp+cWbO50tm63s68/Vku6VtMfdz0hS9nN3tlpVvy7NXheXj+ktkl4r6Udry1Lsx9MlbUn6xyw19A4zu1AJ9sXd/0vS30l6RNIZSd92948owb6sidn2x7dx98ckfVvSzw7W8np/qNX/rJ/QrswgfZl7EC/L1812TKSZPUXS+yW92t2/U7dqyTKvWT4KM7te0ll3PxG6ScmyyfuR2a7V195/cPerJX1fq6/tVWbblyxffINWX8l/TtKFZvaKuk1Kls2iLwG6tH0W/TKz10l6TNLt+aKS1aL3Ze5B/LSkp639fpmkr0/Ullpmdp5WAfx2d/9AtvgbZrY3e3+vpLPZ8qp+nc5eF5eP5bmSXmpmX5H0XknPN7N/UXr9UNaG0+5+b/b7+7QK6in25QWSvuzuW+7+A0kfkPQrSrMvuZhtf3wbM9su6WckPTpYy0uY2QFJ10v6Pc9yIRqpL3MP4vdJusLMLjez87VK9B+buE0/Ibuz/E5JD7r7m9feOibpQPb6gFa58nz5Tdmd6MslXSHpk9nXyu+a2XOyff7+2jaDc/db3f0yd9+n1bn+qLu/IrV+ZH35b0lfM7Mrs0X7JX1eCfZFqzTKc8zsp7M27Jf0oNLsSy5m29f39dtaXbdjfoN9saRbJL3U3f937a1x+jLGTY2eNxFeotVojy9Ket3U7alo469q9ZXns5I+nf17iVa5rLslncp+7lzb5nVZn05qbYSApA1J92fvvVUD3qBp6NO1+vGNzST7IemZkjazz+XfJO1IuC+vl/RQ1o5/1mrEQxJ9kfQerXL5P9Dqf5o3x2y7pAsk/aukh7Ua9fH0kfvysFZ57Pxv/21j9oXH7gEgYXNPpwAAahDEASBhBHEASBhBHAASRhAHgIQRxAEgYQRxAEjY/wNtm/JKKkaCagAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "#from models import Model, SynapticConductanceModel\n",
    "from brian2 import *\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "\n",
    "model = SynapticConductanceModel(resistance=Model.LOW, # Model.LOW, Model.HIGH\n",
    "                                 noise=Model.OFF, n=50, # Model.OFF, Model.LOW, Model,HIGH\n",
    "                                 offset=SynapticConductanceModel.ACTIVE)\n",
    "\n",
    "\n",
    "# model = SineModel(resistance=Model.LOW, # Model.LOW, Model.HIGH\n",
    "#                                   noise=Model.OFF, n=1, # Model.OFF, Model.LOW, Model,HIGH\n",
    "#                                 )\n",
    "\n",
    "\n",
    "model.f = 400 * Hz\n",
    "model.set_stimulus_current(400 * nS) # current should be scaled by 100x for Active Offset so (500nS is actually 5nS)\n",
    "model._set_variable(\"i_injected\", 90 * pA)\n",
    "\n",
    "\n",
    "model.run(12*second)\n",
    "\n",
    "spike_times = [s/ms for s in model.spike_train.values()]\n",
    "\n",
    "plt.eventplot(spike_times)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "7f22e21e",
   "metadata": {},
   "outputs": [],
   "source": [
    "#print(spike_times)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "20e3191c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import scipy.io\n",
    "import numpy as np\n",
    "\n",
    "\n",
    "file_path = 'data0.mat'\n",
    "scipy.io.savemat(file_path, {'data0': spike_times[0]})\n",
    "\n",
    "file_path = 'data1.mat'\n",
    "scipy.io.savemat(file_path, {'data1': spike_times[1]})\n",
    "\n",
    "file_path = 'data2.mat'\n",
    "scipy.io.savemat(file_path, {'data2': spike_times[2]})\n",
    "\n",
    "file_path = 'data3.mat'\n",
    "scipy.io.savemat(file_path, {'data3': spike_times[3]})\n",
    "\n",
    "file_path = 'data4.mat'\n",
    "scipy.io.savemat(file_path, {'data4': spike_times[4]})\n",
    "\n",
    "file_path = 'data5.mat'\n",
    "scipy.io.savemat(file_path, {'data5': spike_times[5]})\n",
    "\n",
    "file_path = 'data6.mat'\n",
    "scipy.io.savemat(file_path, {'data6': spike_times[6]})\n",
    "\n",
    "file_path = 'data7.mat'\n",
    "scipy.io.savemat(file_path, {'data7': spike_times[7]})\n",
    "\n",
    "file_path = 'data8.mat'\n",
    "scipy.io.savemat(file_path, {'data8': spike_times[8]})\n",
    "\n",
    "file_path = 'data9.mat'\n",
    "scipy.io.savemat(file_path, {'data9': spike_times[9]})\n",
    "\n",
    "file_path = 'data10.mat'\n",
    "scipy.io.savemat(file_path, {'data10': spike_times[10]})\n",
    "\n",
    "file_path = 'data11.mat'\n",
    "scipy.io.savemat(file_path, {'data11': spike_times[11]})\n",
    "\n",
    "file_path = 'data12.mat'\n",
    "scipy.io.savemat(file_path, {'data12': spike_times[12]})\n",
    "\n",
    "file_path = 'data13.mat'\n",
    "scipy.io.savemat(file_path, {'data13': spike_times[13]})\n",
    "\n",
    "file_path = 'data14.mat'\n",
    "scipy.io.savemat(file_path, {'data14': spike_times[14]})\n",
    "\n",
    "file_path = 'data15.mat'\n",
    "scipy.io.savemat(file_path, {'data15': spike_times[15]})\n",
    "\n",
    "file_path = 'data16.mat'\n",
    "scipy.io.savemat(file_path, {'data16': spike_times[16]})\n",
    "\n",
    "file_path = 'data17.mat'\n",
    "scipy.io.savemat(file_path, {'data17': spike_times[17]})\n",
    "\n",
    "file_path = 'data18.mat'\n",
    "scipy.io.savemat(file_path, {'data18': spike_times[18]})\n",
    "\n",
    "file_path = 'data19.mat'\n",
    "scipy.io.savemat(file_path, {'data19': spike_times[19]})\n",
    "\n",
    "file_path = 'data20.mat'\n",
    "scipy.io.savemat(file_path, {'data20': spike_times[20]})\n",
    "\n",
    "file_path = 'data21.mat'\n",
    "scipy.io.savemat(file_path, {'data21': spike_times[21]})\n",
    "\n",
    "file_path = 'data22.mat'\n",
    "scipy.io.savemat(file_path, {'data22': spike_times[22]})\n",
    "\n",
    "file_path = 'data23.mat'\n",
    "scipy.io.savemat(file_path, {'data23': spike_times[23]})\n",
    "\n",
    "file_path = 'data24.mat'\n",
    "scipy.io.savemat(file_path, {'data24': spike_times[24]})\n",
    "\n",
    "file_path = 'data25.mat'\n",
    "scipy.io.savemat(file_path, {'data25': spike_times[25]})\n",
    "\n",
    "file_path = 'data26.mat'\n",
    "scipy.io.savemat(file_path, {'data26': spike_times[26]})\n",
    "\n",
    "file_path = 'data27.mat'\n",
    "scipy.io.savemat(file_path, {'data27': spike_times[27]})\n",
    "\n",
    "file_path = 'data28.mat'\n",
    "scipy.io.savemat(file_path, {'data28': spike_times[28]})\n",
    "\n",
    "file_path = 'data29.mat'\n",
    "scipy.io.savemat(file_path, {'data29': spike_times[29]})\n",
    "\n",
    "file_path = 'data30.mat'\n",
    "scipy.io.savemat(file_path, {'data30': spike_times[30]})\n",
    "\n",
    "file_path = 'data31.mat'\n",
    "scipy.io.savemat(file_path, {'data31': spike_times[31]})\n",
    "\n",
    "file_path = 'data32.mat'\n",
    "scipy.io.savemat(file_path, {'data32': spike_times[32]})\n",
    "\n",
    "file_path = 'data33.mat'\n",
    "scipy.io.savemat(file_path, {'data33': spike_times[33]})\n",
    "\n",
    "file_path = 'data34.mat'\n",
    "scipy.io.savemat(file_path, {'data34': spike_times[34]})\n",
    "\n",
    "file_path = 'data35.mat'\n",
    "scipy.io.savemat(file_path, {'data35': spike_times[35]})\n",
    "\n",
    "file_path = 'data36.mat'\n",
    "scipy.io.savemat(file_path, {'data36': spike_times[36]})\n",
    "\n",
    "file_path = 'data37.mat'\n",
    "scipy.io.savemat(file_path, {'data37': spike_times[37]})\n",
    "\n",
    "file_path = 'data38.mat'\n",
    "scipy.io.savemat(file_path, {'data38': spike_times[38]})\n",
    "\n",
    "file_path = 'data39.mat'\n",
    "scipy.io.savemat(file_path, {'data39': spike_times[39]})\n",
    "\n",
    "file_path = 'data40.mat'\n",
    "scipy.io.savemat(file_path, {'data40': spike_times[40]})\n",
    "\n",
    "file_path = 'data41.mat'\n",
    "scipy.io.savemat(file_path, {'data41': spike_times[41]})\n",
    "\n",
    "file_path = 'data42.mat'\n",
    "scipy.io.savemat(file_path, {'data42': spike_times[42]})\n",
    "\n",
    "file_path = 'data43.mat'\n",
    "scipy.io.savemat(file_path, {'data43': spike_times[43]})\n",
    "\n",
    "file_path = 'data44.mat'\n",
    "scipy.io.savemat(file_path, {'data44': spike_times[44]})\n",
    "\n",
    "file_path = 'data45.mat'\n",
    "scipy.io.savemat(file_path, {'data45': spike_times[45]})\n",
    "\n",
    "file_path = 'data46.mat'\n",
    "scipy.io.savemat(file_path, {'data46': spike_times[46]})\n",
    "\n",
    "file_path = 'data47.mat'\n",
    "scipy.io.savemat(file_path, {'data47': spike_times[47]})\n",
    "\n",
    "file_path = 'data48.mat'\n",
    "scipy.io.savemat(file_path, {'data48': spike_times[48]})\n",
    "\n",
    "file_path = 'data49.mat'\n",
    "scipy.io.savemat(file_path, {'data49': spike_times[49]})\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d353eff4",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}