{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "0b85a598",
   "metadata": {},
   "outputs": [],
   "source": [
    "from brian2 import *\n",
    "\n",
    "from adex_sine import *\n",
    "\n",
    "defaultclock.dt = 10 * us\n",
    "\n",
    "\n",
    "class Model:\n",
    "    # Model type flags\n",
    "    SINE = 0\n",
    "    EXP2SYN = 1\n",
    "\n",
    "    # Noise flags\n",
    "    HIGH = 0\n",
    "    LOW = 1\n",
    "    OFF = -1\n",
    "\n",
    "    # Noise parameters\n",
    "    EXCITATORY_NOISE_VARIANCE = {HIGH: 0.5 * nS, LOW: 0.25 * nS, OFF: 0 * nS}\n",
    "    INHIBITORY_NOISE_VARIANCE = {HIGH: 1.25 * nS, LOW: 0.625 * nS, OFF: 0 * nS}\n",
    "\n",
    "    # Noise mean conductance\n",
    "    EXCITATORY_CONDUCTANCE = 1 * nS\n",
    "    INHIBITORY_CONDUCTANCE = 4 * nS\n",
    "\n",
    "    DEFAULT_PARAMETERS = {\n",
    "        \"sigma_flux\" : 6.75*pA,     \n",
    "        \"c\": 85 * pF,\n",
    "        \"tau_w\": 18 * ms,\n",
    "        \"b\": 0.25 * nA,\n",
    "        \"a\": 1.3 * nS,\n",
    "        \"v_T\": -45 * mV,\n",
    "        \"v_thresh\": 0 * mV,\n",
    "        \"DeltaT\": 0.2 * mV,\n",
    "        # EQUILIBRIUM POTENTIAL\n",
    "        \"e_l\": -65 * mV,\n",
    "        \"e_ex\": 0 * mV,\n",
    "        \"e_in\": -70 * mV,\n",
    "        # CONDUCTANCES\n",
    "        \"g_l\": 3 * nS,\n",
    "        \"mu_ex\": 0 * nS,\n",
    "        \"mu_in\": 0 * nS,\n",
    "        # EXCITATORY NOISE\n",
    "        \"sigma_ex\": 0 * nS,\n",
    "        \"tau_noise_ex\": 3 * ms,\n",
    "        # INHIBITORY NOISE\n",
    "        \"sigma_in\": 0 * nS,\n",
    "        \"tau_noise_in\": 10 * ms,\n",
    "        # SINE INPUT\n",
    "        \"f\": 100 * Hz,\n",
    "        \"A\": 0 * pA,\n",
    "        \"i_injected\": 0 * pA,\n",
    "        \"v_reset\": -70 * mV,\n",
    "        # m current\n",
    "        \"g_adapt\": 10 * nS,\n",
    "        \"e_k\": -90*mV,\n",
    "        \"beta_z\": -35*mV,\n",
    "        \"gamma_z\": 4*mV,     #5\n",
    "        \"tau_z\": 100*ms,\n",
    "    }\n",
    "\n",
    "    def __init__(\n",
    "        self, n, *, stim=None, noise=None, resistance=None, additional_vars=()\n",
    "    ):\n",
    "        if resistance is None:\n",
    "            raise ValueError(\"Resistance must be specified\")\n",
    "\n",
    "        if noise is None:\n",
    "            raise ValueError(\"Noise must be specified\")\n",
    "\n",
    "        self.stim_type = stim\n",
    "        self._input_resistance = None\n",
    "        self._noise_level = None\n",
    "        self._duration = 0\n",
    "        self.recorded_vars = (\"v\",) + additional_vars\n",
    "\n",
    "        self.neurons = self.set_default(n_neuron=n)\n",
    "        self.set_resistance(resistance)\n",
    "        self.set_noise(noise)\n",
    "\n",
    "        self.spikes = None\n",
    "        self.spiker = None\n",
    "        self.synapses = None\n",
    "        self.inhib_synapses = None\n",
    "        self.smon = None\n",
    "        self.network = None\n",
    "        self.build_network()\n",
    "\n",
    "    def create_model(self):\n",
    "        return ADEX_MODEL, self.DEFAULT_PARAMETERS\n",
    "\n",
    "    def set_default(self, n_neuron):\n",
    "        model, parameters = self.create_model()\n",
    "\n",
    "        neurons = NeuronGroup(\n",
    "            n_neuron,\n",
    "            model=model,\n",
    "            method=\"Euler\",\n",
    "            name=\"neurons\",\n",
    "            threshold=\"v > v_thresh\",\n",
    "            reset=\"v = v_reset; w += b\",\n",
    "        )\n",
    "\n",
    "        for parameter, value in parameters.items():\n",
    "            neurons.__setattr__(parameter, value)\n",
    "\n",
    "        neurons.v = neurons.e_l  # remove most of transient\n",
    "\n",
    "        return neurons\n",
    "\n",
    "    def set_resistance(self, level):\n",
    "        if level == self.LOW:\n",
    "            exc_conductance = self.EXCITATORY_CONDUCTANCE\n",
    "            inhib_conductance = self.INHIBITORY_CONDUCTANCE\n",
    "\n",
    "        else:\n",
    "            exc_conductance = inhib_conductance = 0\n",
    "\n",
    "        self._input_resistance = level\n",
    "        self._set_variable(\"mu_ex\", exc_conductance)\n",
    "        self._set_variable(\"mu_in\", inhib_conductance)\n",
    "\n",
    "    def set_noise(self, level):\n",
    "        if level == self.HIGH or level == self.LOW:\n",
    "            exc_noise = self.EXCITATORY_NOISE_VARIANCE[level]\n",
    "            inhib_noise = self.INHIBITORY_NOISE_VARIANCE[level]\n",
    "\n",
    "        else:\n",
    "            exc_noise = inhib_noise = 0\n",
    "\n",
    "        self._noise_level = level\n",
    "        self._set_variable(\"sigma_ex\", exc_noise)\n",
    "        self._set_variable(\"sigma_in\", inhib_noise)\n",
    "\n",
    "    def set_injected_current(self, amplitude):\n",
    "        self._set_variable(\"i_injected\", amplitude)\n",
    "        self._set_variable(\"A\", 0 * pA)\n",
    "\n",
    "    def set_stimulus_current(self, amplitude):\n",
    "        self._set_variable(\"A\", amplitude)\n",
    "        self._set_variable(\"i_injected\", 0 * pA)\n",
    "\n",
    "    @property\n",
    "    def f(self):\n",
    "        return self.neurons.f\n",
    "\n",
    "    @f.setter\n",
    "    def f(self, new_f):\n",
    "        self._set_variable(\"f\", new_f)  # this will reset smon\n",
    "        if self.stim_type == self.EXP2SYN:\n",
    "            self.spiker.T = 1 / new_f\n",
    "\n",
    "    def run(self, duration, report=\"stdout\"):\n",
    "        self._duration = duration\n",
    "        self.network.run(duration, report=report)\n",
    "\n",
    "    def build_network(self):\n",
    "        self.smon = StateMonitor(\n",
    "            self.neurons, self.recorded_vars, record=True, name=\"smon\"\n",
    "        )\n",
    "        self.spikes = SpikeMonitor(self.neurons, name=\"spikes\")\n",
    "\n",
    "        self.network = Network(self.neurons, self.smon, self.spikes)\n",
    "\n",
    "    def _set_variable(self, name, value):\n",
    "        self.neurons.__setattr__(name, value)\n",
    "        self.reset_recording()\n",
    "\n",
    "    def reset_recording(self):\n",
    "        try:\n",
    "            self.network\n",
    "        except AttributeError:\n",
    "            return  # network not yet initialized\n",
    "\n",
    "        self.network.remove(self.smon, self.spikes)\n",
    "\n",
    "        self.smon = StateMonitor(\n",
    "            self.neurons, self.recorded_vars, record=True, name=\"smon\"\n",
    "        )\n",
    "        self.spikes = SpikeMonitor(self.neurons, name=\"spikes\")\n",
    "\n",
    "        self.network.add(self.smon, self.spikes)\n",
    "\n",
    "    @property\n",
    "    def spike_train(self):\n",
    "        return self.spikes.spike_trains()\n",
    "\n",
    "    @property\n",
    "    def firing_rate(self):\n",
    "        return self.spikes.count / self.duration\n",
    "\n",
    "    @property\n",
    "    def duration(self):\n",
    "        return self._duration\n",
    "\n",
    "    @property\n",
    "    def input_resistance(self):\n",
    "        if self._input_resistance == self.HIGH:\n",
    "            return \"HIGH\"\n",
    "        else:\n",
    "            return \"LOW\"\n",
    "\n",
    "    @property\n",
    "    def noise_level(self):\n",
    "        if self._noise_level == self.HIGH:\n",
    "            return \"HIGH\"\n",
    "        elif self._noise_level == self.LOW:\n",
    "            return \"LOW\"\n",
    "        else:\n",
    "            return \"NO\"\n",
    "\n",
    "    def __repr__(self):\n",
    "        return f\"{self.neurons.N} Neurons with {self.input_resistance} input resistance and {self.noise_level} noise\"\n",
    "\n",
    "    def __str__(self):\n",
    "        return self.__repr__()\n",
    "\n",
    "    def store(self, name):\n",
    "        self.network.store(name)\n",
    "\n",
    "    def restore(self, name):\n",
    "        self.network.restore(name)\n",
    "\n",
    "    @property\n",
    "    def v(self):\n",
    "        return self.smon.v\n",
    "\n",
    "    @property\n",
    "    def t(self):\n",
    "        return self.smon.t\n",
    "\n",
    "    @property\n",
    "    def injected_current(self):\n",
    "        return self.neurons.i_injected\n",
    "\n",
    "    @property\n",
    "    def stimulus_amplitude(self):\n",
    "        return self.neurons.A\n",
    "\n",
    "\n",
    "class CurrentModel(Model):\n",
    "    def __init__(self, **kwargs):\n",
    "        super().__init__(stim=self.SINE, **kwargs)\n",
    "\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += CURRENT_INPUT\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "\n",
    "class SineModel(CurrentModel):\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += SINE_INPUT\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "\n",
    "class SawModel(CurrentModel):\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += SAW_INPUT\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "\n",
    "class SynapticModel(Model):\n",
    "    def __init__(self, **kwargs):\n",
    "        super().__init__(stim=self.EXP2SYN, **kwargs)\n",
    "\n",
    "    SYNAPTIC_PARAMETERS = {\n",
    "        \"tau_input_1\": 0.4 * ms,\n",
    "        \"tau_input_2\": 4 * ms,\n",
    "        \"offset_A\": 1.48793507e-11,\n",
    "        \"offset_B\": -2.66359562e-08,\n",
    "        \"offset_C\": 1.77538800e-05,\n",
    "        \"offset_D\": -8.05925810e-04,\n",
    "        \"offset_E\": -3.51463644e-02,\n",
    "        \"offset_switch\": 0,\n",
    "    }\n",
    "\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += EXP2SYN_WAVEFORM + SUMMATION_OFFSET\n",
    "        parameters = {**parameters, **self.SYNAPTIC_PARAMETERS}\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "    def build_network(self):\n",
    "        super().build_network()\n",
    "        self.spiker = NeuronGroup(\n",
    "            self.neurons.N,\n",
    "            \"\"\"T : second (constant)\n",
    "                                     lastspike : second\"\"\",\n",
    "            threshold=\"timestep(t-lastspike, dt)>=timestep(T, dt)\",\n",
    "            reset=\"lastspike=t\",\n",
    "        )\n",
    "        self.spiker.T = 1 / self.neurons.f\n",
    "        self.synapses = Synapses(\n",
    "            self.spiker, self.neurons, on_pre=\"input_aux += 1\"\n",
    "        )  # connect input to neurons\n",
    "        self.synapses.connect(\"i==j\")  # one synapse goes to one neuron\n",
    "\n",
    "        self.network.add(self.spiker, self.synapses)\n",
    "\n",
    "\n",
    "class SynapticCurrentModel(SynapticModel):\n",
    "    def __init__(self, offset=True, **kwargs):\n",
    "        self.offset = 1 if offset else 0\n",
    "        super().__init__(**kwargs)\n",
    "\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        model += CURRENT_INPUT + SYNAPTIC_INPUT_CURRENT\n",
    "        parameters = {**parameters, **{\"offset_switch\": self.offset}}\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "\n",
    "class SynapticConductanceModel(SynapticModel):\n",
    "    FLAT = 0\n",
    "    ACTIVE = 1\n",
    "\n",
    "    CONDUCTANCE_PARAMETERS = {\n",
    "        \"A\": 0 * nS,  # overwrite A to be conductance\n",
    "        \"g_i\": 1 * nS,\n",
    "    }\n",
    "\n",
    "    INHIBITION_PARAMETERS = {\n",
    "        \"tau_inhibition_1\": 1 * ms,\n",
    "        \"tau_inhibition_2\": 10 * ms,\n",
    "    }\n",
    "\n",
    "    def __init__(self, offset=ACTIVE, **kwargs):\n",
    "        self.offset = offset\n",
    "        super().__init__(**kwargs)\n",
    "\n",
    "    def create_model(self):\n",
    "        model, parameters = super().create_model()\n",
    "        if self.offset == self.FLAT:\n",
    "            model += CONDUCTANCE_INPUT + SYNAPTIC_CONDUCTANCE_FLAT\n",
    "            parameters = {\n",
    "                **parameters,\n",
    "                **self.SYNAPTIC_PARAMETERS,\n",
    "                **self.CONDUCTANCE_PARAMETERS,\n",
    "                **{\"offset_switch\": 1},\n",
    "            }\n",
    "\n",
    "        elif self.offset == self.ACTIVE:\n",
    "            model += CONDUCTANCE_INPUT + SYNAPTIC_CONDUCTANCE_STIM\n",
    "            parameters = {\n",
    "                **parameters,\n",
    "                **self.SYNAPTIC_PARAMETERS,\n",
    "                **self.CONDUCTANCE_PARAMETERS,\n",
    "                **self.INHIBITION_PARAMETERS,\n",
    "            }\n",
    "\n",
    "        return model, parameters\n",
    "\n",
    "    def build_network(self):\n",
    "        super().build_network()\n",
    "        if self.offset != self.ACTIVE:\n",
    "            return\n",
    "\n",
    "        self.inhib_synapses = Synapses(\n",
    "            self.spiker, self.neurons, on_pre=\"input_inhib_aux += 1\", delay=2 * ms\n",
    "        )  # connect input to neurons\n",
    "        self.inhib_synapses.connect(\"i==j\")  # one synapse goes to one neuron\n",
    "\n",
    "        self.network.add(self.inhib_synapses)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "c82769f2",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING    Cannot use Cython, a test compilation failed: Microsoft Visual C++ 14.0 or greater is required. Get it with \"Microsoft C++ Build Tools\": https://visualstudio.microsoft.com/visual-cpp-build-tools/ (DistutilsPlatformError) [brian2.codegen.runtime.cython_rt.cython_rt.failed_compile_test]\n",
      "INFO       Cannot use compiled code, falling back to the numpy code generation target. Note that this will likely be slower than using compiled code. Set the code generation to numpy manually to avoid this message:\n",
      "prefs.codegen.target = \"numpy\" [brian2.devices.device.codegen_fallback]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Starting simulation at t=0. s for a duration of 12. s\n",
      "0.59074 s (4%) simulated in 10s, estimated 3m 13s remaining.\n",
      "1.1805 s (9%) simulated in 20s, estimated 3m 3s remaining.\n",
      "1.73466 s (14%) simulated in 30s, estimated 2m 58s remaining.\n",
      "2.2598 s (18%) simulated in 40s, estimated 2m 52s remaining.\n",
      "2.79789 s (23%) simulated in 50s, estimated 2m 44s remaining.\n",
      "3.3331 s (27%) simulated in 1m 0s, estimated 2m 36s remaining.\n",
      "3.86953 s (32%) simulated in 1m 10s, estimated 2m 27s remaining.\n",
      "4.40891 s (36%) simulated in 1m 20s, estimated 2m 18s remaining.\n",
      "4.9353 s (41%) simulated in 1m 30s, estimated 2m 9s remaining.\n",
      "5.46898 s (45%) simulated in 1m 40s, estimated 1m 59s remaining.\n",
      "6.0078 s (50%) simulated in 1m 50s, estimated 1m 50s remaining.\n",
      "6.54327 s (54%) simulated in 2m 0s, estimated 1m 40s remaining.\n",
      "7.08089 s (59%) simulated in 2m 10s, estimated 1m 30s remaining.\n",
      "7.61778 s (63%) simulated in 2m 20s, estimated 1m 21s remaining.\n",
      "8.15275 s (67%) simulated in 2m 30s, estimated 1m 11s remaining.\n",
      "8.68792 s (72%) simulated in 2m 40s, estimated 1m 1s remaining.\n",
      "9.22402 s (76%) simulated in 2m 50s, estimated 51s remaining.\n",
      "9.76185 s (81%) simulated in 3m 0s, estimated 41s remaining.\n",
      "10.29861 s (85%) simulated in 3m 10s, estimated 31s remaining.\n",
      "10.82811 s (90%) simulated in 3m 20s, estimated 22s remaining.\n",
      "11.34823 s (94%) simulated in 3m 30s, estimated 12s remaining.\n",
      "11.85943 s (98%) simulated in 3m 40s, estimated 3s remaining.\n",
      "12. s (100%) simulated in 3m 42s\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[<matplotlib.collections.EventCollection at 0x1b985cb57f0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985cca7f0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985cd8850>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985ce5820>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985cf2790>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d00880>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d0c8b0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d19a60>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d27a90>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d35c40>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d41d00>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d4eb50>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d5ba00>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d69ac0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d75a30>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d83850>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d906d0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985d9c3d0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985da81f0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985db70d0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985dc50a0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985dd11f0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985dde100>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985deb100>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985df8130>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e02fa0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e0ffd0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e200a0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e2e070>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e3a130>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e43fa0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e4ffd0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e630a0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e6af70>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e77e80>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e84d30>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e92cd0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985e9eb20>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985eacb50>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985eb8a90>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985ec6910>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985ed2ac0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985ee0b80>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985eecb20>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985efac10>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985f07c40>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985f15ca0>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985f21c40>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985f31d90>,\n",
       " <matplotlib.collections.EventCollection at 0x1b985f3dd60>]"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD4CAYAAAAaT9YAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAli0lEQVR4nO2df6ymx1XfvwdvftDANutmbd3GEZtIltUVKxJ6G2UJQi7GbKARDqhhEzV0Ud3aUlspFCSybv7g8hcmrRCqkMpaELRACOtCUltW2sUyWAhp5eRahKzjH9hASNzc4ktcYQJ/gOH0j/vMeva8Z2bOPO977965+X6k1X3feZ6ZOWeeeUf7fufMeUVVQQghZEy+7lobQAghZD5cxAkhZGC4iBNCyMBwESeEkIHhIk4IIQNzaC87e8Mb3qDHjh3byy4JIWR4Hn/88T9X1aPetT1dxI8dO4bNzc297JIQQoZHRP60dI1yCiGEDAwXcUIIGRgu4oQQMjBcxAkhZGC4iBNCyMCEolNE5AsA/hLA3wF4WVXXReR6ABcAHAPwBQA/qKr/b3fMJIQQ4tHzP/F/rqpvVdX16f1ZAI+o6s0AHpneE0II2UOWkVPuAHB+en0ewHuWtoYQQkgX0UVcAfyWiDwuIndNZTeq6hYATH9v8CqKyF0isikim9vb28tbTAgh5ArRE5vvVNUvi8gNAB4WkaejHajqfQDuA4D19XX+AgUhhKyQ0CKuql+e/r4gIp8E8HYAfyYia6q6JSJrAF7YLSNPn7tUvPbk1ksAgONrh6+8P752GBfuPonT5y5d9T61Zet4bdr2Sth+Su1EsXVyu2skO2xZXte7p+VHXie/B4A7zi3fUr1av9Exb10r+d+y377ObS7ZVhqn0lh69XNbc2rjMWesonPWfnbm2Of117IJWPxsRudXqf2STTVfSmNRsj1vI/fBG8dV0pRTROR1IvKN6TWA7wbwBIAHAZyZbjsD4IFdsZAQQkiRyP/EbwTwSRFJ9/+aqv5vEfkMgPtF5E4AXwTw3t0zkxBCiEdzEVfVPwbwLU75VwDcthtGEUIIiTHMic2kM3m6Uq43JR3K6lanz13C6XOXcOHukzi+dtjV3FL7+TWrjdr+T2xcBABc3jh1pczakpOupfYseTupfetLbktqL9mRrj+59dIVn62tHuna8bXDV7Wf189fW30w1bPjZP3MxzPZmI+5HX9vnE5sXFwot+Pgacy5j3aeeJqltSW335L8KO3FWFs8v0p7Gnk7eb2S1po/B0/3LWnBwM788z5Lp89dWhjbRMm+/N58LO2ehaWkh+fz3Rs/u8eR+sj7ae0x1fTwWr28/TS/vOe3GwyziBNCCFmEizghhAwMF3FCCBkYUd278zfr6+s65+fZeuI5vetAPUa31V5vLHQrprcWowos6s1RO20bLbtqMc+Ar9FGx8H2MXf8azHbkT6Wjb/2YoBr5S3fPOwZhtY4lCidkeixpWV/r03Jv5Y9tWeXKMX/235qbUfPXdTqz33uy+jiIvJ4lrfqKvg/cUIIGRgu4oQQMjBcxAkhZGCGW8Q9XdTTpGy8dSnW2mvDarCpbmqzFbOex+l6NnvxwhfuPonLG6eaGqO1zdpR0sg922sxz7UcH3lMt43BtXG8uc9ebK9nXyTGNuIz8EqcvbW1RG53imP37LTjY+307Cv5kY93aV7XxsGL607PyZvn3vwsnVuw95Ts8+Z7ep3H5+c2pznv+ZWfc/DOSuQadUnnrp0ZsXWt7Tau3Y6PnSde/ZJvq2a4RZwQQsgrcBEnhJCB4SJOCCEDc+DixHN9qpS7oie3eLo/GlfaamtO25H47Ghu6Nq91vZlclF77c6J2a7l6Y7E0peu2XlRO1cw55xAJPY76ntvnHYprrlkk2d7q77tzytv+VuLv+6lN2bdqw/4ZzTm2Os9J8aJE0IIWYCLOCGEDAwXcUIIGZjhNPHefBBztOKodhihlD+hlfeh1E4pn4TXzl75EckNUnuGtX0L20ckd0Uk901vHo/e+0o6ekQ/npP7pEfjL5W16kTzptj9lejn09vPWtV+SNTX3jnSk1+FmjghhJAFuIgTQsjADCenAP5X0rnhX7V7gXJa2JqsEZFwEtGvz62v554/y6Yk9WzuCZWr2RxJ79oi+vV+2XolyS3y9d6jJcPkROfosvaX2u0Jb/XGJPcjEioZkZ+Wbd+O2TKfkx6pcBkopxBCyAGFizghhAwMF3FCCBmYYTXx6JF5yzJHfSNHaeccj5/bP7CoUZfGpqVb9vxclW0vr99qL3pEu/eoeo9frSP2rXqez5Ej+q19lhI94ZzWv2WPo+fXeuduKXR0FaGB0ZBArx/A1/sj6Thac6fmJ0MMCSGELMBFnBBCBoaLOCGEDMxwmnjkyPwc/c62l9PSPFcRM90bh93TZ83fVp/evdHY2DmpOntjryNx1ZHY3Wi61VJfNX9q9kRi6IH2MXSvLa/P1lH61FfLTou3r2DHqEUktjvyOeo5L1KrE9k/6413nws1cUIIOaBwESeEkIEJL+Iicp2I/L6IPDS9v15EHhaRZ6e/R3bPTEIIIR5hTVxEfhTAOoDDqvpuEfkIgBdV9V4ROQvgiKp+qNbGMpp4K/9BhGVitIFFvbQWv1vSUKO6dVSD7MmfUbsvotOuUqfvjQlP1GKv8/olfX2OD6X7ajb15h3poTfXSCq386UW774stdS3pbjs2hmE3hwmidr49M75nnWnFj8+h6U1cRG5CcC/APALWfEdAM5Pr88DeM8s6wghhMwmKqf8LIAfB/D3WdmNqroFANPfG7yKInKXiGyKyOb29vYythJCCDE0F3EReTeAF1T18TkdqOp9qrququtHjx6d0wQhhJACTU1cRH4KwA8BeBnAawEcBvAJAP8MwK2quiUiawAeVdVbam2tQhOv5SSI5v8A4hpqpL1ozG8vrdjekqbp1fO0wN447FZuDWtfzaf9zNxx722/VZZfA+ox+pH8L705WPI6rXrR2PDoOQ/bdnSse+PHI/ldlj0HYfuZw1KauKreo6o3qeoxAO8D8Nuq+gEADwI4M912BsADS1lJCCGkm2XixO8FcLuIPAvg9uk9IYSQPeRQz82q+iiAR6fXXwFw2+pNIoQQEmW4E5t5rOuFu08Wf4MvXbdc3jh1lVaVXp8+dwkX7j551XvbniW/P28rtzW3oaWL2X6sLal+rsvm5Sc2Li7YkY9PasfzsUS6Jx/3ZGtpXJJ9qW97X6mevdbzOu8rWtYi+Zzuvbxx6kp5lNIczK/beWQ5vna4OBdyW/PXpTwmaY5c3jhVnI+5z7atZIfXf36v11byJZW39HDvGZWu22eUX7tw98kr/ubz0tqd+5zPF9tmyc/8tf2M7ibDLeKEEEJegYs4IYQMDBdxQggZmCEXcasPWr3W6twAXL0r58mtl6605+lbttzWLWm2SYPM7QViWmnels19kbeZa912n6CUT6Jkr7Ut1ymt/n987fCVcfPGOdfoU5+5vuvp+t4eQ0kztuXpvbfPYTXKSH4Wa28Jq52XYo9Tm/k88/TrqF6fbPXmUpoHJQ25puva8fLs9Hz25mxp7OxzzsfF3pOPV0tfL+375Np3mpd2/uXzLX0WT2xcXNhrqn12rS09Z1jmMuQiTgghZAcu4oQQMjBcxAkhZGAOzG9s2uutfL6RfMutPvK6JXtt2z15kls5TpbJgdyT3ySSG6VWJzLmrVwu0fwZtbwmrfwxkfzfeTu2rdp9Fk+rjs6DUg4Xe2/JvoiftXwtJebmxYmOu1cvMSdPTOQ5Rj9j0Rwwc+FvbBJCyAGFizghhAzMcHJKYhUpTSOpRWtSQkvOye2vSTA1mSAipZS+bqdrgP9V3ZOBWlJKa0xKdrYklVa7JfnD0vr6XJNOeqS0qN218ahJSauc37XXtbpA38+4leZ4S4qJymi1dqPyWClkOCottu6pjTPlFEIIIQtwESeEkIHhIk4IIQMz1CJeOzbtHfmtHWP2jup61PTXWjiSTQlQOsacjuZaLc+mzPSOHOdpTPNjy97x+NIx/hMbF4v+e0eh7XjV0hLY48uttuxx6Fo6z3wM87bzPvO28r5KIW32iH00ZWwpdalnc2nO1cIEvXYir1vpUPN55h1Bz23Nj9nb9BR2nqay/Kh+KZWAtxdg0wNYH+xc8p6L/TzY55e/tuPUs87k99gxz/tdRg9vMdQiTggh5Gq4iBNCyMBwESeEkIEZJk48GvtsqcW0Jkox1vm9rXjPOcfSe+rnvpTaT77U+i212Sor+dAT21xKbWDvyantV0Ts8frpjZ+uxab3pFOIHs+u+VNLbdD7LDwf7PXaMf+ez8GcNA+18w95XaCcWrj3zEPrWi1G3avXOtcQhXHihBByQOEiTgghA8NFnBBCBmYYTTwnmg4yfx3VqVppPT07Wng5Oex771qvhmfvmauhRvNQ2D4T0b2FUl9RSvYBZb09Mna5Hy2ifkbtqD07a1Mr70pNs448/5q/rdwvpXqRMqCevybZn/vj1bX3R/cPavfW8NYVb09hDtTECSHkgMJFnBBCBoaLOCGEDMwwmnhNPwN8vbmlba1Kx0ttJVvn9teyoxWnG9k76OkTaOv2eV/Wjpq9kfwr0TjqnpzcPfeW6pRybUf03Mh5h8gZhmW0aI/WPkpkLGtx3ZEY/JrdUT97P2M99UrPv7bXtooYcYCaOCGEHFi4iBNCyMA0F3ERea2IfFpE/kBEPi8iPzmVXy8iD4vIs9PfI7tvLiGEkJymJi4iAuB1qvpVEXkVgN8D8EEAPwDgRVW9V0TOAjiiqh+qtbWKOPFltTmPli7XysnRGxPtEYlzT2OxjNbbo/3lryPtt/TFHm2+d6zm5CCpxf8nShpnagco7xtENOBIzpJaG8vsxURy9CR6c/l4fdT2A3rOdrTajcx3L3a7Nn/S9Uj8fq2NuSyliesOX53evmr6pwDuAHB+Kj8P4D1LWUkIIaSbkCYuIteJyGcBvADgYVV9DMCNqroFANPfGwp17xKRTRHZ3N7eXpHZhBBCgOAirqp/p6pvBXATgLeLyDdHO1DV+1R1XVXXjx49OtNMQgghHt1x4iLyEwD+CsC/A3Crqm6JyBqAR1X1llrdVedO6SGiC5b0Z6CdpzsSA12rG9Fzo/qbx1w9uhUTnpgTmzvXvmRDROuszZ1IDHTLD6DvTEJNZ47MqVben5pN+T2tPSLbr2efHQOvnWgsfm+9mqa9qjw8vfSMay9LaeIiclREXj+9/noA3wXgaQAPAjgz3XYGwAOzLSSEEDKLQ4F71gCcF5HrsLPo36+qD4nIJQD3i8idAL4I4L27aCchhBCH5iKuqp8D8Dan/CsAbtsNowghhMQYJndKTkQnbsWVJlp5hHvzLNuyvI+eWOtaf6345mjeZGtTqhvNI5Lfn/xchQ4a0f57zwLU2uh5nfwstRPto+UP0J7btXH32s3bmpOzxOrPtXju6J5Cz1xvjV8ai8j1VZztqPmT274KmDuFEEIOKFzECSFkYIaXU3IiX7GjX29Lbdf6ifw8U6/UUDtWXkpF23MEvWVL1Ober9S10M7cl1YdWz+SErZ3fsyRCHqO9Fu7WvSmYqi9jvZlqc1HO+dLNtbSIdQkpFV9xj05KhIm2ErFUJvXc6GcQgghBxQu4oQQMjBcxAkhZGCG0sRbOhhQDjGyzAkvmxsyNbduJBVnbxrdWlv59UQ0/WZPWF7tqHRP6Jdt12OZMLY5YYstO6Khq8tq85F+I30B9dS8tmxOOuCShm7r2/LaGEbmcM/eUOtazVdrzxyoiRNCyAGFizghhAwMF3FCCBmYoTTxHkpabORnlKI/tRTV50plpX5bx8574rDnHK+utdd6DcTibnu0/NZx76juPSddbjQFQPK7p+28bqo/N1Y8J5qOoTe9QM2PWlmN1p5NJK1v6TnNPVrfk76iZwyuWSpaQggh+xcu4oQQMjBcxAkhZGCG1cSjGnMth0NPTGreZq0/z75WrpXeGOtV5UXJ+8j7KWmikRwkPVp7KfdL1Oae63NTsdqy1h5Ay/6S3turu0ba9OpGxqHnbEEtf1BO7ezDnBh64GotPCeqi/fo8bW56l3P72HuFEIIIUW4iBNCyMBwESeEkIEZRhOfqxHW7p8TEz43xrZH452bKyMa690TM93ScCN5TSKaZysXeER7rbVRa7M1XqU6rfwcXluRvBq9mrJ3T6m9yH5Cb76YyB7TnNzpPeclErXPTW3sS9p8atPzN1pGTZwQQkgRLuKEEDIwXMQJIWRghtHEE3N0x5a26bXbyt/g9eu9Btrx17X2okT2CYBYPogeO0p6qJdv2rOpR7uMxJvXNOLeuPCeHB6R+1v9rcLm2uuS7YD/e6SR+P+W76WcJqnPSF6c/N7IHlFEm+/JP9SiZw9uLtTECSHkgMJFnBBCBoaLOCGEDMxwmjgQjx/1yubmGE5liZ5cFrmttThjz/ZajLOtZ+nVBHv1wZ4cFJ49rXa96yVdcU4ccqn/kh2Arx3b+2vx49Exs7TyjJTGO2J3bn+6t5UrpTZWni+R/aGevSdvbEr99mj8tl2gvM8SXX9WES9OTZwQQg4ozUVcRN4kIr8jIk+JyOdF5INT+fUi8rCIPDv9PbL75hJCCMmJ/E/8ZQA/pqr/BMA7APwHETkO4CyAR1T1ZgCPTO8JIYTsId2auIg8AODnpn+3quqWiKwBeFRVb6nVXVYT9/IcALHfvANieuac9rw2LDW9Mfm2yjwQ1qZlYt174tx7Ynl748c9e3tzUkdzh9TGsva65GNvLHEkx0xUy+/R8Xv2knJ7E5FzAt4zs23MmbeRa5HzINGzJDVqsf9zWJkmLiLHALwNwGMAblTVLQCY/t4w20JCCCGzCC/iIvINAH4TwI+o6kut+7N6d4nIpohsbm9vz7GREEJIgZCcIiKvAvAQgIuq+jNT2TO4BnJKKyyuFX44p04kfWiqPyeMKSIPzTkmHw23KtlWGofoV/SonakM8I9i23o9x7pz2/P7etMq5LZF5IXer+WrCPX0XtfGYRXhm6s6vt6SdSK+RYlKND1hyRHp7JrJKSIiAH4RwFNpAZ94EMCZ6fUZAA/MtpAQQsgsDgXueSeAHwJwWUQ+O5X9ZwD3ArhfRO4E8EUA790VCwkhhBRpLuKq+nsApHD5ttWaQwghpIehjt3PTflYOpreG3IX1ch6Q86W1cVLaUVL4xQ9Eh+pn5clolqz7b8nTHDu0eeaXzX/avf0hnb26PGerb17DnPC9KLhdDWN3bvHth9JP9C6t9R2zddVpKCopSAA/L2IufDYPSGEHFC4iBNCyMBwESeEkIEZShP3KOlPUa0qldfik3OiqThL16I6byluNnosew7RmOsaEf+sP5F9glK93vhiW9aTNrYV3x4ZB+tna2xy23JaR9W9scrrtXRoz4/atVoMf8sWa080xUBrT6TWtu2nZmNkbwVop8lYBmrihBByQOEiTgghA8NFnBBCBmYoTbyVwjLd25vGsjenyTI5XKJ6fUvr7clfEdEme/KIROOHI74vE+td0zLtPSXmxKfXiJ4haMX2e+2W7usZw5K9vXspvZpvaU8H8FNE9561mOPL3PkU2c+wbS4LNXFCCDmgcBEnhJCB4SJOCCEDM7QmDvhacv7eq9cTExvJGxzRVJfJ1VAjqmd7GmwpfniOvt+KsS+NY00XndNuXtaKs27FGEf2SWrlrfZKNvfkbem9ltsxR/PNmXseISe6LwX4n/GefZZUL2/LXovsOURjzdP72hhGoSZOCCEHFC7ihBAyMFzECSFkYIbSxHPmxOxGNEFLTevy7sttjmhntfr2+jL5YCLxtNEx9frzfPD8iFLbx5ijG7fijlvaeitePern3LZ690xK86lHB89f1+aRZ2crX0vvvoJHZA8rlQF9v8cZmW+1fEfRfYUo1MQJIeSAwkWcEEIGhos4IYQMzDCLeNK1cl3JK0uvPW3sxMbFq7Sqki6dx5PmdZ7cegmnz10qaor5P8CPfbY25O3mdlnfvDqpj7wfq/959ubXvPK8X+tn6q+kf3vj4FF7drY/a+vpc5cWnlVrT8H2kT/j1vX8eQCL8coRUrsnNi669qb2ct/y+1p7EJ7/p89dwomNizixcfGKrVarzcvyvi7cfXJh/PPPQUm7zu/P28/7zdstUZp/6V8J79kcXzuMyxunin3YOWSfgzffrK/Wp9zWOec/ehhmESeEELIIF3FCCBkYLuKEEDIwQ8aJz4mlLeVUse335oNu9e3l72jF0EZsa/naE0Nfe52I9lXKGdGKAS7F0kZzhETHI5rXptVHK767lROmZWfe5pz4/Z55DNTzE9n60Vw6kVwopfwonl898fhen5GY8h5/PCLrwBwYJ04IIQcULuKEEDIwwyzieRiQ97UVKH8Vu3D3SVzeOHXlegr9SSFYeVktbArAlVAlGwqWymthZ17IUgo5tKFTtdBA+zrvM/p1rvS12vaRhzC2wvNsCKYNN6sdPS5dK92fnlvi8sapq8bQzouSf5ZaCGrJxie3Xlqwx4Z+WokqD0Er+WjH0WLDaVvPPX+O+TwuSSk1CcDKgaksDyu08zIfzzzkNn/vzeX0bL3Q2/xe73VtDEvz2spFXuind78dt5Ktq2aYRZwQQsgiXMQJIWRgmou4iHxURF4QkSeysutF5GEReXb6e2R3zSSEEOLRDDEUke8A8FUAv6yq3zyVfQTAi6p6r4icBXBEVT/U6myVIYZ5eSRMrxZa1grd8zTNVrhSJD1l3k4tVC9vL79mx6fUZys9qBc6VrK7RPR+T2+NhKrV2i+VlfyzfbZSlZZC4lopV6Mhd62yZEMrzNXDmytzQj+tfZEQy57P2KqYG14beXaReukaUN53msNSIYaq+rsAXjTFdwA4P70+D+A9s60jhBAym7ma+I2qugUA098bSjeKyF0isikim9vb2zO7I4QQ4rHrG5uqep+qrqvq+tGjR3e7O0II+ZoidOxeRI4BeCjTxJ8BcKuqbonIGoBHVfWWVjur0MRrx+fTvTW9bs7RXa+dZMtcna+l67eOgpd03qj2n/sAtDX+kr8tDXeZ8W71Oecou1fWu3dQ8y+aziA6V1p6NbAYY107Lh/ZrygR3Xuotb2K/Q57rXaM35bXaD3LvD17vdXefjx2/yCAM9PrMwAemNkOIYSQJYiEGH4cwCUAt4jI8yJyJ4B7AdwuIs8CuH16TwghZI851LpBVd9fuHTbim0hhBDSyTAnNpMmledASdj8DzYnQjTOuZR/IZHnx6jlHCnVz6/Z3Cjeew8vF0TKAVPS8Gp6ZSnnxvG1wws+5PlhbO4L26ft27vH5hHJyXXO/NnnY2DxclZYP7xxsPk7vOdg2/LuzW0sPYu8bm2O5PfW8s3kPzvmPcvcjtxWr037ucnbsPXzMjt+6XppPtjXvTHU3ufa+pjn/fF0cutHXtfOt/yZe/lnSuSfjWX2hVoMs4gTQghZhIs4IYQMDBdxQggZmGEW8VyDLemqOXkO4FbOjNS+p7+24kNtH608HBYvJ7F9X8tlbDXAxOWNUwt6aUunb5Vb3T1v19sjsDbb/YraGNk+cl9LfdTymHvt5s+6ltc75Xz3xsS7N7WZSPs4dg/A89+2XcpfnsjnX36v3auxn5mSPl6Lsy5RiqW2ewglnfzJrZcWxtizMy+zObzz/ku5hUq22/ttWdp7sJ/JfD6W9hhKNq2SYRZxQgghi3ARJ4SQgeEiTgghAzPkIm41sFw783RRG/8Z0ffy2NdInHErJ0VLY0z1k5Zai11O97V+y8/TNkuU9gBsndx2L3dHrtFaTTrfz8j9KY1fTafOY4Wtppv/K8U+J7u9uWP3OEqaej4G9no+9vbZpjkZOZtg27Jaeq7P2hjs1n5O6j8fQ+8cArD4m6be58LD7pN4OrGNv7Z25uW5f56d1nerbXvlrfh3e4+3F5P/Vu9eM+QiTgghZAcu4oQQMjBcxAkhZGCGX8Tz/BGlmNlE0pE9Pc3TNlsx315+Dy8e29OWa7lRarGvtZwonoZndUUvljjXRT37bcyxlyvDXi/dY7F92udX0ys9fT3Xt60+7+GNT64vl/LKeJT2Tjw7AT8PUG5LqpPn6bDnJLw9ipKdXmy63XMp6dylWPCW3p3vOdgzGFZnz/312irtcXjnBkq5fbzy1IYdHzs3ar9JUNoraeX7WQXDL+KEEPK1DBdxQggZGC7ihBAyMKHf2FwVy/zGZi3e2YtXtnmEvfeJnt/fs2217i3Z68Xt2uul3yOc06bnQ6v/3rZaYxEZ89y/Wh+R5xD1yYsZLv0+YkkXjY5D/trzNe8v+rxrvuZlXju2Tsm23HfrU+3Z9uQxic7F1jNvtVNr21J6zp4NrTVhGXbjNzYJIYTsA7iIE0LIwAwjp1giX4Va17x7gXpYnP2q2yPb5PZEvo5Hjx6XfImMT2q3ZW/pdUkmiHw1tT7V5AuvrXS9ZovXb+Qrekmi88Zmztf7ki15n5F2euSGqMwAlFM41CSx0vXI56pmS7pm27AyT0n28eypPcuckizk9eOtA602olBOIYSQAwoXcUIIGRgu4oQQMjBf05q4F0aV99fS0FJdr5+IJhsNj0tt5MypV/KrdMQ9GkrVM/41zbH2nFshnnNCIUu2tTTV0r1zQldrPrZsbenwwGL4YoloyGjt/ohmn4j61woftvVb+yK1z7LXT6TP0th4r+dCTZwQQg4oXMQJIWRguIgTQsjADKeJ144H55Tib2uxytF451I/ts1orG6kz1rsdCQlQC1mNaob9hz9LtGrudrXc/ro0duBxaPmvecBavsIkf2QSFx7xG97LfnWqhOJkS/ZW/oszaUWcx1JxzHnnMZuxbtTEyeEELIAF3FCCBmYpRZxEXmXiDwjIs+JyNlVGUUIISTGbE1cRK4D8IcAbgfwPIDPAHi/qj5ZqrMqTRxY/LmoWjrPEi09MKKFReJl58TUlvy199ZSmNa0xNrrko8tInlAImPj9dnyt0Ykpjvia682WrI9oqnn9vakgl02xtzOoaifc+aIV9aaH6348Qg9+zKAP+55eencRWI/x4m/HcBzqvrHqvo3AH4dwB1LtEcIIaSTZRbxNwL4Uvb++ansKkTkLhHZFJHN7e3tJbojhBBiWWYRF6dsQZtR1ftUdV1V148ePbpEd4QQQizLaOInAWyo6qnp/T0AoKo/VaozVxMnhJCvZXZLE/8MgJtF5M0i8moA7wPw4BLtEUII6eTQ3Iqq+rKI/EcAFwFcB+Cjqvr5lVlGCCGkyexFHABU9VMAPrUiWwghhHTCE5uEEDIwXMQJIWRguIgTQsjAcBEnhJCB4SJOCCEDw0WcEEIGhos4IYQMDBdxQggZmD39jU0R2QbwpzOrvwHAn6/QnGvJQfHloPgB0Jf9Cn3Z4ZtU1c0guKeL+DKIyGYpAcxoHBRfDoofAH3Zr9CXNpRTCCFkYLiIE0LIwIy0iN93rQ1YIQfFl4PiB0Bf9iv0pcEwmjghhJBFRvqfOCGEEAMXcUIIGZh9v4iLyLtE5BkReU5Ezl5rezxE5E0i8jsi8pSIfF5EPjiVXy8iD4vIs9PfI1mdeyafnhGRU1n5PxWRy9O1/yYi3g9S77Y/14nI74vIQ4P78XoR+Q0ReXp6NicH9uU/TXPrCRH5uIi8dhRfROSjIvKCiDyRla3MdhF5jYhcmMofE5Fje+zLf5nm2OdE5JMi8vo99UVV9+0/7Pzs2x8BeAuAVwP4AwDHr7Vdjp1rAL51ev2NAP4QwHEAHwFwdio/C+Cnp9fHJ19eA+DNk4/XTdc+DeAkAAHwvwB8zzXw50cB/BqAh6b3o/pxHsC/nV6/GsDrR/QFwBsB/AmAr5/e3w/gh0fxBcB3APhWAE9kZSuzHcC/B/Dz0+v3Abiwx758N4BD0+uf3mtf9vRDNWPATgK4mL2/B8A919qugN0PALgdwDMA1qayNQDPeH5g53dKT073PJ2Vvx/AuT22/SYAjwD4TryyiI/ox2HsLHxiykf05Y0AvgTgeuz8pOJD08IxjC8AjpmFb2W2p3um14ewcypS9soXc+37AXxsL33Z73JKmryJ56eyfcv09edtAB4DcKOqbgHA9PeG6baSX2+cXtvyveRnAfw4gL/Pykb04y0AtgH80iQN/YKIvA4D+qKq/wfAfwXwRQBbAP5CVX8LA/qSsUrbr9RR1ZcB/AWAf7Rrltf5N9j5n/VVdk3sii/7fRH39Lp9GxMpIt8A4DcB/IiqvlS71SnTSvmeICLvBvCCqj4ereKUXXM/Jg5h52vvf1fVtwH4K+x8bS+xb32Z9OI7sPOV/B8DeJ2IfKBWxSnbF74EmGP7vvBLRD4M4GUAH0tFzm0r92W/L+LPA3hT9v4mAF++RrZUEZFXYWcB/5iqfmIq/jMRWZuurwF4YSov+fX89NqW7xXvBPB9IvIFAL8O4DtF5Fcxnh+YbHheVR+b3v8Gdhb1EX35LgB/oqrbqvq3AD4B4Nswpi+JVdp+pY6IHALwDwG8uGuWO4jIGQDvBvCvdNJCsEe+7PdF/DMAbhaRN4vIq7Ej9D94jW1aYNpZ/kUAT6nqz2SXHgRwZnp9BjtaeSp/37QT/WYANwP49PS18i9F5B1Tm/86q7PrqOo9qnqTqh7Dzlj/tqp+YDQ/Jl/+L4AvicgtU9FtAJ7EgL5gR0Z5h4j8g8mG2wA8hTF9SazS9rytf4mdebuX32DfBeBDAL5PVf86u7Q3vuzFpsaSmwjfi51ojz8C8OFrbU/Bxm/HzleezwH47PTve7GjZT0C4Nnp7/VZnQ9PPj2DLEIAwDqAJ6ZrP4dd3KBp+HQrXtnYHNIPAG8FsDk9l/8J4MjAvvwkgKcnO34FOxEPQ/gC4OPY0fL/Fjv/07xzlbYDeC2A/wHgOexEfbxlj315Djs6dvrs//xe+sJj94QQMjD7XU4hhBBSgYs4IYQMDBdxQggZGC7ihBAyMFzECSFkYLiIE0LIwHARJ4SQgfn/9WevRfndfP4AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "#from models import Model, SynapticConductanceModel\n",
    "from brian2 import *\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "\n",
    "model = SynapticConductanceModel(resistance=Model.LOW, # Model.LOW, Model.HIGH\n",
    "                                 noise=Model.LOW, n=50, # Model.OFF, Model.LOW, Model,HIGH\n",
    "                                 offset=SynapticConductanceModel.ACTIVE)\n",
    "\n",
    "\n",
    "# model = SineModel(resistance=Model.LOW, # Model.LOW, Model.HIGH\n",
    "#                                   noise=Model.OFF, n=1, # Model.OFF, Model.LOW, Model,HIGH\n",
    "#                                 )\n",
    "\n",
    "\n",
    "model.f = 400 * Hz\n",
    "model.set_stimulus_current(400 * nS) # current should be scaled by 100x for Active Offset so (500nS is actually 5nS)\n",
    "model._set_variable(\"i_injected\", 90 * pA)\n",
    "\n",
    "\n",
    "model.run(12*second)\n",
    "\n",
    "spike_times = [s/ms for s in model.spike_train.values()]\n",
    "\n",
    "plt.eventplot(spike_times)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "7f22e21e",
   "metadata": {},
   "outputs": [],
   "source": [
    "#print(spike_times)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "20e3191c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import scipy.io\n",
    "import numpy as np\n",
    "\n",
    "\n",
    "file_path = 'data0.mat'\n",
    "scipy.io.savemat(file_path, {'data0': spike_times[0]})\n",
    "\n",
    "file_path = 'data1.mat'\n",
    "scipy.io.savemat(file_path, {'data1': spike_times[1]})\n",
    "\n",
    "file_path = 'data2.mat'\n",
    "scipy.io.savemat(file_path, {'data2': spike_times[2]})\n",
    "\n",
    "file_path = 'data3.mat'\n",
    "scipy.io.savemat(file_path, {'data3': spike_times[3]})\n",
    "\n",
    "file_path = 'data4.mat'\n",
    "scipy.io.savemat(file_path, {'data4': spike_times[4]})\n",
    "\n",
    "file_path = 'data5.mat'\n",
    "scipy.io.savemat(file_path, {'data5': spike_times[5]})\n",
    "\n",
    "file_path = 'data6.mat'\n",
    "scipy.io.savemat(file_path, {'data6': spike_times[6]})\n",
    "\n",
    "file_path = 'data7.mat'\n",
    "scipy.io.savemat(file_path, {'data7': spike_times[7]})\n",
    "\n",
    "file_path = 'data8.mat'\n",
    "scipy.io.savemat(file_path, {'data8': spike_times[8]})\n",
    "\n",
    "file_path = 'data9.mat'\n",
    "scipy.io.savemat(file_path, {'data9': spike_times[9]})\n",
    "\n",
    "file_path = 'data10.mat'\n",
    "scipy.io.savemat(file_path, {'data10': spike_times[10]})\n",
    "\n",
    "file_path = 'data11.mat'\n",
    "scipy.io.savemat(file_path, {'data11': spike_times[11]})\n",
    "\n",
    "file_path = 'data12.mat'\n",
    "scipy.io.savemat(file_path, {'data12': spike_times[12]})\n",
    "\n",
    "file_path = 'data13.mat'\n",
    "scipy.io.savemat(file_path, {'data13': spike_times[13]})\n",
    "\n",
    "file_path = 'data14.mat'\n",
    "scipy.io.savemat(file_path, {'data14': spike_times[14]})\n",
    "\n",
    "file_path = 'data15.mat'\n",
    "scipy.io.savemat(file_path, {'data15': spike_times[15]})\n",
    "\n",
    "file_path = 'data16.mat'\n",
    "scipy.io.savemat(file_path, {'data16': spike_times[16]})\n",
    "\n",
    "file_path = 'data17.mat'\n",
    "scipy.io.savemat(file_path, {'data17': spike_times[17]})\n",
    "\n",
    "file_path = 'data18.mat'\n",
    "scipy.io.savemat(file_path, {'data18': spike_times[18]})\n",
    "\n",
    "file_path = 'data19.mat'\n",
    "scipy.io.savemat(file_path, {'data19': spike_times[19]})\n",
    "\n",
    "file_path = 'data20.mat'\n",
    "scipy.io.savemat(file_path, {'data20': spike_times[20]})\n",
    "\n",
    "file_path = 'data21.mat'\n",
    "scipy.io.savemat(file_path, {'data21': spike_times[21]})\n",
    "\n",
    "file_path = 'data22.mat'\n",
    "scipy.io.savemat(file_path, {'data22': spike_times[22]})\n",
    "\n",
    "file_path = 'data23.mat'\n",
    "scipy.io.savemat(file_path, {'data23': spike_times[23]})\n",
    "\n",
    "file_path = 'data24.mat'\n",
    "scipy.io.savemat(file_path, {'data24': spike_times[24]})\n",
    "\n",
    "file_path = 'data25.mat'\n",
    "scipy.io.savemat(file_path, {'data25': spike_times[25]})\n",
    "\n",
    "file_path = 'data26.mat'\n",
    "scipy.io.savemat(file_path, {'data26': spike_times[26]})\n",
    "\n",
    "file_path = 'data27.mat'\n",
    "scipy.io.savemat(file_path, {'data27': spike_times[27]})\n",
    "\n",
    "file_path = 'data28.mat'\n",
    "scipy.io.savemat(file_path, {'data28': spike_times[28]})\n",
    "\n",
    "file_path = 'data29.mat'\n",
    "scipy.io.savemat(file_path, {'data29': spike_times[29]})\n",
    "\n",
    "file_path = 'data30.mat'\n",
    "scipy.io.savemat(file_path, {'data30': spike_times[30]})\n",
    "\n",
    "file_path = 'data31.mat'\n",
    "scipy.io.savemat(file_path, {'data31': spike_times[31]})\n",
    "\n",
    "file_path = 'data32.mat'\n",
    "scipy.io.savemat(file_path, {'data32': spike_times[32]})\n",
    "\n",
    "file_path = 'data33.mat'\n",
    "scipy.io.savemat(file_path, {'data33': spike_times[33]})\n",
    "\n",
    "file_path = 'data34.mat'\n",
    "scipy.io.savemat(file_path, {'data34': spike_times[34]})\n",
    "\n",
    "file_path = 'data35.mat'\n",
    "scipy.io.savemat(file_path, {'data35': spike_times[35]})\n",
    "\n",
    "file_path = 'data36.mat'\n",
    "scipy.io.savemat(file_path, {'data36': spike_times[36]})\n",
    "\n",
    "file_path = 'data37.mat'\n",
    "scipy.io.savemat(file_path, {'data37': spike_times[37]})\n",
    "\n",
    "file_path = 'data38.mat'\n",
    "scipy.io.savemat(file_path, {'data38': spike_times[38]})\n",
    "\n",
    "file_path = 'data39.mat'\n",
    "scipy.io.savemat(file_path, {'data39': spike_times[39]})\n",
    "\n",
    "file_path = 'data40.mat'\n",
    "scipy.io.savemat(file_path, {'data40': spike_times[40]})\n",
    "\n",
    "file_path = 'data41.mat'\n",
    "scipy.io.savemat(file_path, {'data41': spike_times[41]})\n",
    "\n",
    "file_path = 'data42.mat'\n",
    "scipy.io.savemat(file_path, {'data42': spike_times[42]})\n",
    "\n",
    "file_path = 'data43.mat'\n",
    "scipy.io.savemat(file_path, {'data43': spike_times[43]})\n",
    "\n",
    "file_path = 'data44.mat'\n",
    "scipy.io.savemat(file_path, {'data44': spike_times[44]})\n",
    "\n",
    "file_path = 'data45.mat'\n",
    "scipy.io.savemat(file_path, {'data45': spike_times[45]})\n",
    "\n",
    "file_path = 'data46.mat'\n",
    "scipy.io.savemat(file_path, {'data46': spike_times[46]})\n",
    "\n",
    "file_path = 'data47.mat'\n",
    "scipy.io.savemat(file_path, {'data47': spike_times[47]})\n",
    "\n",
    "file_path = 'data48.mat'\n",
    "scipy.io.savemat(file_path, {'data48': spike_times[48]})\n",
    "\n",
    "file_path = 'data49.mat'\n",
    "scipy.io.savemat(file_path, {'data49': spike_times[49]})\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d353eff4",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}