:$Id: IT.mod,v 1.12 2004/06/08 19:32:19 billl Exp $
TITLE Low threshold calcium current
:
: Ca++ current responsible for low threshold spikes (LTS)
: THALAMOCORTICAL CELLS
: Differential equations
:
: Model based on the data of Huguenard & McCormick, J Neurophysiol
: 68: 1373-1383, 1992 and Huguenard & Prince, J Neurosci.
: 12: 3804-3817, 1992.
:
: Features:
:
: - kinetics described by Nernst equations using a m2h format
: - activation considered at steady-state
: - inactivation fit to Huguenard's data using a bi-exp function
: - shift for screening charge, q10 of inactivation of 3
:
: Described in:
: Destexhe, A., Bal, T., McCormick, D.A. and Sejnowski, T.J. Ionic
: mechanisms underlying synchronized oscillations and propagating waves
: in a model of ferret thalamic slices. Journal of Neurophysiology 76:
: 2049-2070, 1996. (see http://www.cnl.salk.edu/~alain)
:
:
: Alain Destexhe, Salk Institute and Laval University, 1995
:
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX ittc
USEION ca READ cai,cao WRITE ica
GLOBAL q10m,q10h
RANGE g, gmax, m_inf, tau_m, h_inf, tau_h, shift, i
}
UNITS {
(molar) = (1/liter)
(mV) = (millivolt)
(mA) = (milliamp)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER {
v (mV)
gmax = 0.0022 (mho/cm2)
q10m = 3 : Q10 of activation
q10h = 3 : Q10 of inactivation
exptemp = 24 (degC)
shift = 2 (mV) : corresponds to 2mM ext Ca++
cai = 2.4e-4 (mM) : adjusted for eca=120 mV
cao = 2 (mM)
}
STATE {
m h
}
ASSIGNED {
g (mho/cm2)
i (mA/cm2)
ica (mA/cm2)
carev (mV)
m_inf
tau_m (ms) : dummy variable for compatibility
h_inf
tau_h (ms)
phi_m
phi_h
celsius
}
BREAKPOINT {
SOLVE states METHOD cnexp
carev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai)
g = gmax * m * m * h
i = g * (v-carev)
ica = i
}
DERIVATIVE states {
mh(v)
m' = (m_inf - m) / tau_m
h' = (h_inf - h) / tau_h
}
UNITSOFF
INITIAL {
:
: Transformation to 36 deg assuming Q10 of 3 for h
: (as in Coulter et al., J Physiol 414: 587, 1989)
phi_m = q10m ^ ((celsius-exptemp)/10)
phi_h = q10h ^ ((celsius-exptemp)/10)
mh(v)
h = h_inf
m = m_inf
}
PROCEDURE mh (v(mV)) { LOCAL Vm
Vm = v + shift
m_inf = 1.0 / ( 1 + exp(-(Vm+57)/6.2) )
h_inf = 1.0 / ( 1 + exp((Vm+81)/4.0) )
: tau_m = (0.822/(exp(-(Vm+130 )/16.7) + exp((Vm+14.8)/18.2) ) + 0.480)/phi_m
tau_m = (1 / (exp(-(Vm+129.6)/16.7) + exp((Vm+14.8)/18.2) ) + 0.612)/phi_m
: tau_h = ( 8.2+(56.6+0.27*exp((Vm+113.2)/5))/(1+exp((Vm+84)/3.2)))/phi_h
tau_h = (30.8+(211.4 + exp((Vm+113.2)/5))/(1+exp((Vm+84)/3.2)))/phi_h
}
UNITSON