# 2-Compartment Motoneuron Model - Sharmila Venugopal (svenugopal10@gmail.com) # Cite: S Venugopal et al., J Neurophysiology, 2011 # Applied current pulse from holding current i0 with magnitude ip # turns on at pon and off at poff # Ca concentration in micromoles/liter # # version for computing bifurcation diagrams # #soma equations dvs/dt=(iapp+ins(vs,snah,scam,scah)+outs(vs,sn,sca)-gl*(vs-(vl+vrest))+gc*(vd-vs)/parea)/cm dsnah/dt=(snahinf(vs)-snah)/snahtau(vs) dsn/dt=(sninf(vs)-sn)/sntau(vs) dscam/dt=(scaminf(vs)-scam)/camtau dscah/dt=(scahinf(vs)-scah)/cahtau dsca/dt=-f*alpha*sica(vs,scam,scah)-f*kca*sca ds/dt=alphamn*(1-s)*sinf(vs)-betamn*s #dendrite equations #dvd/dt=(ind(vd,dcam,dcah,dcas)+outd(vd,dn,dca)-INaP-gl*(vd-(vl+vrest))+gc*(vs-vd)/(1.0-parea))/cm dvd/dt=(ind(vd,dcas)+outd(vd,dn,dca)-pernap*gNaP*mnap*hnap*(Vd-(vna+vrest))-gl*(vd-(vl+vrest))-Ir+gc*(vs-vd)/(1.0-parea))/cm #ddcam/dt=(dcaminf(vd)-dcam)/camtau #ddcah/dt=(dcahinf(vd)-dcah)/cahtau ddcas/dt=(dcasinf(vd)-dcas)/dcastau ddn/dt=(dninf(vd)-dn)/dntau(vd) #ddca/dt=-f*alpha*(dicas(vd,dcas)+dicaf(vd,dcam,dcah))-f*kca*dca ddca/dt=-f*alpha2*(dicas(vd,dcas))-f*kca*dca #-----------Persistent Sodium----------------- #dmnap/dt=(minfnap(Vd)-mnap)/taumnap(Vd) dmnap/dt=(minfnap(Vd)-mnap)/taunap p taunap=40 #dhnap/dt=(hinfnap(vd)-hnap)/tauhnap(Vd) dhnap/dt=(hinfnap(vd)-hnap)/naptau p naptau=1000 #INaP=gNaP*minfnap(Vd)*hnap*(Vd-(vna+vrest)) #INaP=gNaP*mnap*hnap*(Vd-(vna+vrest)) #INaP=gNaP*mnap*(Vd-55) minfnap(Vd)=1/(1+exp(-(vd-thetamnap)/Kmnap)) hinfnap(vd)=1/(1+exp((vd-thetahnap)/Khnap)) #taunap(Vd)=taumxnap/cosh((vd-thetahnap)/(2*Khnap)) taumnap(Vd)=Tmnap/cosh((vd-thetamnap)/(2*Khnap)) tauhnap(Vd)=taumxnap/cosh((vd-thetahnap)/(2*Khnap)) p thetamnap=-48,Kmnap=3,thetahnap=-35,Khnap=6,taumxnap=10000,Tmnap=5000 # #---------------RC equations----------------- dvr/dt=(-gna*minf(vr)^3*h(nr)*(vr-ena)-gk*nr^4*(vr-ek)-gl*(vr-el)+Idr)/cr dnr/dt=(ninf(vr)-nr)/ntau(nr) dsr/dt=alphar*(1-sr)*sinf(vr)-betar*sr sinf(v)=1/(1+exp(-(v-thetas)/ks)) ntau(v)=28./(exp((v+50)/20)+exp(-(v+60)/10)) ninf(v)=1.0/(1+exp((nVh-v)/nk)) minf(v)=1.0/(1+exp((mVh-v)/mk)) h(n) = .7 - 1.1*n #--------Synaptic Currents------------ Imn=gmn*s*(vr-ve) p Ipool=0 p Idr=6.2 Ir=gr*sr*(vd-vi) # ----------RC parameters--------------- p cr=1 p alphamn=2,betamn=0.05 p alphar=1 p betar=0.09 # other values of betar = 0.025, 0.0125 p thetas=-15, ks=.02 #p ggb=0.005,ggl=0.005 p gr=0.01 # Changed on Oct 6th 2009 p gmn=0.15 p ve=50,vi=-80 p rgk=100 p gna=80.0,rnamth=-35.0,rnamslp=7.8,rnahth=-55.0,rnahslp=7.0 par mVh=-40,mk=7,nVh=-45,nk=15 p rgna=70,el=-54,Gk=40 p Ena=50,Ek=-77,eca=80 # soma functions ins(vs,snah,scam,scah)=-sina(vs,snah)-sica(vs,scam,scah) outs(vs,sn,sca)=-sikdr(vs,sn)-sikca(vs,sca) sina(vs,snah)=sgna*snaminf(vs)**3*snah*(vs-(vna+vrest)) sica(vs,scam,scah)=sgca*scam**2*scah*(vs-(vca+vrest)) sikdr(vs,sn)=sgk*sn**4*(vs-(vk+vrest)) sikca(vs,sca)=perkca*sgkca*(sca**p/(kd**p+sca**p))*(vs-(vk+vrest)) snaminf(vs)=1.0/(1.0+exp(-(vs-snamth)/snamslp)) snahinf(vs)=1.0/(1.0+exp((vs-snahth)/snahslp)) snahtau(vs)=snahc/(exp((vs-snahv)/snaha)+exp(-(vs-snahv)/snahb)) sninf(vs)=1.0/(1.0+exp(-(vs-nth)/nslp)) sntau(vs)=nc/(exp((vs-nv)/na)+exp(-(vs-nv)/nb)) scaminf(vs)=1.0/(1.0+exp(-(vs-camth)/camslp)) scahinf(vs)=1.0/(1.0+exp((vs-cahth)/cahslp)) # dendrite functions ind(vd,dcas)=-dicas(vd,dcas) outd(vd,dn,dca)=-dikdr(vd,dn)-dikca(vd,dca) dicaf(vd,dcam,dcah)=dgcaf*dcam**2*dcah*(vd-(vca+vrest)) dicas(vd,dcas)=percap*dgcas*dcas*(vd-(vca+vrest)) dikdr(vd,dn)=dgk*dn**4*(vd-(vk+vrest)) dikca(vd,dca)=perkca*dgkca*(dca**p/(kd**p+dca**p))*(vd-(vk+vrest)) dcaminf(vd)=1.0/(1.0+exp(-(vd-camth)/camslp)) dcahinf(vd)=1.0/(1.0+exp((vd-cahth)/cahslp)) dcasinf(vd)=1.0/(1.0+exp(-(vd-dcasth)/dcasslp)) dninf(vd)=1.0/(1.0+exp(-(vd-nth)/nslp)) dntau(vd)=nc/(exp((vd-nv)/na)+exp(-(vd-nv)/nb)) # applied current - here a parameter iapp #iapp(t)=i0+heav(poff-t)*heav(t-pon)*ip # # bifurcation parameter p iapp=0 # common parameters p vna=115.0,vk=-20.0,vl=0.0,vca=140.0,vrest=-60.0,cm=1.0,gl=0.51, p p=1,kd=0.2,f=0.01,kca=2.0,alpha=0.009 # soma parameters p sgna=80.0,snamth=-35.0,snamslp=7.8,snahth=-55.0,snahslp=7.0 p snahv=-50.0,snaha=15.0,snahb=16.0,snahc=30.0 p sgk=100.0,nth=-28.0,nslp=12.0,nv=-40.0,na=40.0,nb=50.0,nc=7.0 p sgca=14.0,camth=-30.0,camslp=5.0,camtau=4.0 p cahth=-45.0,cahslp=5.0,cahtau=40.0 #p sgkca=5.0 p sgkca=6 # dendrite parameters p dgcaf=0.3 p dcasth=-39.0,dcasslp=7.0,dcastau=40.0 p dgk=0.0 # coupling parameters p gc=0.1,parea=0.1 #p gc=0.08,parea=0.1 # current parameters p i0=0,ip=10,pon=50,poff=1000 # conductance percentage factors p perkca=1.0, perslca=1.0 # conductances sensitive to SCI p dgkca=1.0 p gnap=0.1 p dgcas=0.25 p gpratio=1.772 p alpha2=0.009 p percap=1 p pernap=1 -------- Iramp=offsetr+scaler*(t-tonr)*(heav(t-tonr)*heav(toffr-t))+2*scaler*(tswitchr-t)*(heav(t-tswitchr)*heav(toffr-t)) par offsetr=0 par scaler=0.005 par tonr=0 par toffr=10000 par tswitchr=4000 # Changed on Nov 16 in order to compare the grading of sec. freq by RC inhibition #Iramp=offsetr+scaler*(t-tonr)*(heav(t-tonr)*heav(toffr-t)) #par offsetr=0 #par scaler=0.0007 #par tonr=0 #par toffr=30000 #par tswitchr=4000 -------- # soma initial conditions vs(0)=-57.34 snah(0)=0.5829 sn(0)=0.1239 scam(0)=0.004199 scah(0)=0.9219 sca(0)=0.0001406 # dendrite initial conditions vd(0)=-56.64 #dcam(0)=0.00483 #dcah(0)=0.9112 dcas(0)=0.08493 dn(0)=0.1291 dca(0)=0.01724 # #aux xiapp=iapp(t) aux I=Iramp aux Ipulse=Iapp aux Ivclamp=(ins(vs,snah,scam,scah)+outs(vs,sn,sca)-gl*(vs-(vl+vrest))+gc*(vd-vs)/parea)/cm aux Irc=-Ir aux Ipic=ind(vd,dcas)-pernap*gNaP*mnap*hnap*(Vd-(vna+vrest)) # #xpp formatting @ TOTAL=10000,DT=0.05, @ MAXSTOR=1000000,BOUNDS=600000,method=qualrk @ xlo=0,xhi=10000,ylo=-60,yhi=40,nplot=2,yp2=vr,nplot=3,yp3=Ipulse done