TITLE Borg-Graham type generic K-A channel for a Sympathetic Preganglionic Neuron
COMMENT
Description: A-type transient K current for a Sympathetic Preganglionic Neuron.
Author: Linford Briant
A-type transient K current = "IA"
Sympathetic Preganglionic Neurones = "SPNs"
Note that this is a modified version of IA found widely on SenseLab. This version has had steady-state kinetics
that have been fit to data for the IA in SPN according to Whyment et al. (2011).
Whyment et al. (2011), PMID: 21211550
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
v (mV)
ek (mV)
celsius (degC)
gkabar=0.012 (mho/cm2)
vhalfn=-45 (mV)
vhalfl=-67 (mV)
vhalfm=-67 (mV)
vhalfk=-45 (mV)
a0l=0.023 (/ms)
a0n=0.04 (/ms)
zetan=-4 (1)
zetal=2 (1)
gmn=0.45 (1)
gml=1 (1)
zetam=4 (1)
zetak=-5 (1)
}
NEURON {
SUFFIX borgka
USEION k READ ek WRITE ik
RANGE gkabar,gka,vhalfn,vhalfl,a0l,a0n,zetan,zetal,gmn,gml,zetam,zetak,vhalfm,vhalfk
GLOBAL ninf,linf,taul,taun
}
STATE {
n
l
}
INITIAL {
rates(v)
n=ninf
l=linf
}
ASSIGNED {
ik (mA/cm2)
ninf
linf
taul
taun
gka
}
BREAKPOINT {
SOLVE states METHOD cnexp
gka = gkabar*n*l
ik = gka*(v-ek)
}
FUNCTION alpn(v(mV)) {
alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION alpk(v(mV)) {
alpk = exp(1.e-3*zetak*(v-vhalfk)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betn(v(mV)) {
betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION alpl(v(mV)) {
alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION alpm(v(mV)) {
alpm = exp(1.e-3*zetam*(v-vhalfm)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betl(v(mV)) {
betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
}
DERIVATIVE states {
rates(v)
n' = (ninf - n)/taun
l' = (linf - l)/taul
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,q10,b
q10=3^((celsius-30)/10)
a = alpn(v)
b = alpk(v)
ninf = 1/(1 + b)
taun = betn(v)/(q10*a0n*(1 + a))
a = alpl(v)
b = alpm(v)
linf = 1/(1 + b)
taul = betl(v)/(q10*a0l*(1 + a))
}